
DynaComm
Connectivity
Series®

Script Language Reference

DCS

© 2012 by FutureSoft, Inc. All rights reserved.

DynaComm Connectivity Series™ Script Language Reference

This manual, and the software described in it, is furnished under a license agreement. Information in this document is
subject to change without notice and does not represent a commitment on the part of FutureSoft. The software may
be used or copied only in accordance with the terms of the agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose other than the purchaser’s personal use without the written
permission of FutureSoft, Inc.

DynaComm, DynaComm Connectivity Series, DynaComm Client Option, and FutureSoft are registered trademarks
of FutureSoft, Inc. All other trademarks are the property of their respective owners.

1986-2012 FutureSoft, Inc.

E-Edition 14-2012
Document #E-DCSR9200 013009

Written and designed at:
FutureSoft, Inc.

(800) 989-8908

info@futuresoft.com

http://www.futuresoft.com

iii

Table of C
ontents

Contents

1
Introduction to the Script Language

 ...15
DCS Script Language Overview ...16
Creating, Compiling, and Executing a Script ...17
Commands, Functions and Arguments ..20
Command Blocks ..22
Line Continuation ...23
Comments ...24
Labels ..25
Strings ...27
Numerics ..37
Booleans ...40
Special Argument Types ...43
Variable Creation ...47
Symbols ..49
Operators ...54
Scoping Rules ..59
Parameter Passing & Subroutines ..61
Tables, Records and Data Manipulation ...64
Menus ...71
DCS Windows & Window Handles ..74
Event Handling - WAIT and WHEN Commands ...76
Dynamic Data Exchange - DDE ..78
Task Errors ..82
Converting Scripts from Previous Versions of DCS ...84

2
Functions

 ...87
Functions in Alphabetical Order ...88
Functions by Category ..92

ACTIVE ..96
ATTRIBUTES ..97
BAND ..98
BNOT ...99
BOOL .. 100

iv

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

2
Functions

Functions, continued

Contents, continued

BOR ... 101
BUFFER .. 102
BUFFER, continued ... 103
BXOR .. 104
CHR ... 105
CONNECT ... 107
CONNECTMESSAGE .. 108
CONNECTRESULT .. 109
CURSOR .. 110
DATE ... 111
(DDE) ADVISE .. 112
DECRYPT ... 113
DEFAULTSESSIONHANDLE ... 115
(DIALOG) CHECKBOX ... 116
(DIALOG) EDITTEXT .. 117
(DIALOG) LISTBOX ... 118
(DIALOG) MESSAGEBOX.. 119
(DIALOG) RADIOGROUP ... 121
DIALOGHANDLE .. 122
DIRECTORY .. 123
DISKSPACE ... 125
ENCRYPT ... 126
EOF ... 127
ERROR .. 128
EXFLDATTR .. 129
EXISTS .. 134
FILESIZE .. 135
FILTER .. 136
FLDATTR ... 138
FLDATTREXPOS .. 140
FLDLEN ... 141
FLDNUM ... 142
FLDPOS ... 143
FLDTEXT ... 144
GETAPPCONFIG .. 145
GETCONNCONFIG ... 146
GETDISPLAYCONFIG ... 147

Table of C
ontents

v

2
Functions

Functions, continued

Contents, continued

GETEMULCONFIG .. 148
GETGENERALCONFIG ... 149
GETPROFILEDATA .. 150
GETXFERCONFIG ... 151
HWNDLIST ... 153
ICONIC ... 155
INT .. 156
LENGTH ... 157
(MENU) CHECKED ... 158
(MENU) ENABLED .. 159
NETID ... 160
NEXT .. 161
NUM ... 162
ORD .. 163
PASSWORD .. 164
PHONENUMBER ... 165
POS ... 166
POSITION .. 167
POWER .. 168
PRTMETRICS .. 169
PUTPROFILEDATA .. 170
RANDOM .. 172
REAL ... 173
RESULT .. 174
ROUND .. 175
ROUTE ... 176
SCREEN ... 178
SEARCH ... 180
SEARCHINRECT .. 182
SECONDS .. 183
SETTINGS.. 184
STR .. 192
SUBSTR .. 193
SYSMETRICS .. 194
SYSTEM ... 195
TASKFILE ... 197
TASKLIST ... 198

vi

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

2
Functions

Functions, continued

Contents, continued

TASKNAME ... 199
TIME ... 200
TIMER ... 201
TRIM ... 202
TYPEDLIBRARYCALL ... 203
UPPER .. 205
USERID .. 206
VERSION ... 207
VISIBLE... 208
WINDOW .. 209
WINDOWHND ... 210
WINDOWNAME .. 211
WNDCLASS .. 212
WNDFILE... 213
WNDTITLE .. 214
ZOOMED .. 215

3
Commands

 .. 216
Commands in Alphabetical Order ... 217
Commands by Category.. 227

APPCONFIG ... 240
ARGUMENTS ... 242
BEEP ... 243
BEGIN ... 244
BREAK .. 245
CANCEL ... 246
CLEAR .. 247
COLLECT ... 248
COLLECT, continued .. 249
COMPILE ... 251
CONCAT .. 252
CONNCONFIG ... 253
CONNECT ... 256

Table of C
ontents

vii

3
Commands

Commands, continued

Contents, continued

CONTINUE .. 258
CREATE DIRECTORY .. 259
(DDE) ACCESS ... 260
(DDE) ACCESS CANCEL .. 262
(DDE) INSTRUCT .. 263
(DDE) POKE .. 264
(DDE) REQUEST .. 265
(DDE) TABLE REPLY ... 266
(DDE) TABLE REQUEST ... 268
(DDE) TABLE SEND .. 269
(DDE) WAIT SIGNAL .. 270
(DDE) WHEN ADVISE .. 271
(DDE) WHEN EXECUTE ... 273
(DDE) WHEN INITIATE... 275
(DDE) WHEN POKE .. 276
(DDE) WHEN REQUEST .. 278
(DDE) WHEN TERMINATE .. 280
DEBUG ... 281
DECREMENT .. 283
DIAL .. 284
DIALOG ... 286
(DIALOG) BUTTON .. 291
DIALOG CANCEL .. 293
(DIALOG) CHECKBOX ... 294
DIALOG CONTROL .. 296
(DIALOG) DIMENSION .. 300
(DIALOG) EDITTEXT .. 301
(DIALOG) GROUPBOX .. 303
(DIALOG) ICON ... 304
(DIALOG) ICONBUTTON .. 305
(DIALOG) LISTBOX ... 307
(DIALOG) MESSAGE .. 309
(DIALOG) NEWLINE ... 310
(DIALOG) PICTURE .. 311
(DIALOG) RADIOBUTTON ... 312
(DIALOG) RADIOGROUP ... 313
DIALOG UPDATE .. 315

viii

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

3
Commands

Commands, continued

Contents, continued

DISCONNECT .. 318
DISPLAY .. 319
DISPLAYCONFIG ... 321
DROPDTR ... 323
EDIT COPY .. 324
EDIT COPYSPECIAL ... 325
EDIT CUT ... 328
EDIT FIND ... 329
EDIT GOTO ... 330
EDIT PASTE ... 331
EDIT REPLACE ... 332
EMULCONFIG .. 334
END .. 343
EXECUTE ... 344
FILE CLOSE ... 345
FILE COMPRESS .. 346
FILE COPY ... 347
FILE CREATENAME .. 348
FILE DECOMPRESS .. 351
FILE DECRYPT ... 352
FILE DELETE ... 353
FILE ENCRYPT.. 354
FILE OPENNAME .. 355
FILE PAUSE ... 357
FILE RECEIVE BINARY.. 358
FILE RENAME ... 361
FILE RESUME ... 362
FILE SEND BINARY ... 363
FKEYS ... 366
GENERALCONFIG ... 367
GOTO ... 369
HANGUP ... 370
IF .. 371
INCREMENT ... 372
KERMIT COPY .. 373
KERMIT DIRECTORY .. 374
KERMIT ERASE .. 375

Table of C
ontents

ix

3
Commands

Commands, continued

Contents, continued

KERMIT FINISH .. 376
KERMIT FREESPACE ... 377
KERMIT HELP ... 378
KERMIT LOGOUT .. 379
KERMIT MESSAGE .. 380
KERMIT NEWDIRECTORY .. 381
KERMIT RENAME .. 382
KERMIT TYPE ... 383
KERMIT WHO ... 384
KEY.. 385
KEYBOARD ... 389
KEYMAP LOAD .. 390
KEYMAP RESET ... 391
KEYMAP SAVE ... 392
LAUNCH .. 393
LEAVE ... 395
LEVEL ... 396
LIBRARY CALL ... 397
LIBRARY LOAD .. 400
LIBRARY UNLOAD.. 401
LINENUMBERS .. 402
LOAD .. 403
LOGTOFILE ... 404
MENU ... 405
MENU CANCEL ... 406
MENU DELETE ITEM .. 407
MENU DELETE POPUP ... 408
MENU INSERT ITEM ... 409
MENU INSERT POPUP .. 411
(MENU) ITEM ... 412
(MENU) POPUP ... 414
(MENU) SEPARATOR.. 416
MENU UPDATE ... 417
NOSHOW .. 419
PARSE ... 420
PERFORM ... 422
PRINT CANCEL .. 423

x

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

3
Commands

Commands, continued

Contents, continued

PRINT CLOSE ... 424
PRINT FILE .. 425
PRINT FONT ... 426
PRINT NEWLINE .. 427
PRINT NEWPAGE .. 428
PRINT OPEN ... 429
PRINT STRING ... 430
PRINT STYLE .. 431
PRINT TABS .. 432
PRINT TERMINAL .. 433
QUIT ... 434
RECORD FORMAT .. 435
RECORD READ .. 436
RECORD SCAN .. 438
RECORD WRITE ... 439
REMOVE DIRECTORY .. 441
RESETSERIAL ... 442
RESTART .. 443
RESUME .. 444
RETURN ... 445
SAVE ... 446
SCREEN ... 447
SCROLL DOWN ... 448
SCROLL LEFT ... 449
SCROLL RIGHT .. 450
SCROLL UP ... 451
SELECTION ... 452
SELECTION APPEND ... 453
SELECTION BUFFER .. 454
SELECTION PRINT .. 455
SELECTION SAVE .. 456
SELECTION SEND ... 457
SEND .. 458
SENDBREAK ... 463
SET .. 464
SET APPTITLE .. 465
SET ATTRIBUTES ... 466

Table of C
ontents

xi

3
Commands

Commands, continued

Contents, continued

SET AUTOSCROLLTOCURSOR .. 467
SET AUTOSIZE ... 468
SET BACKSPACEDESTRUCTIVE .. 469
SET BACKSPACEKEY .. 470
SET BAUDRATE ... 471
SET BINARYTRANSFERPARAMS .. 472
SET BINARYTRANSFERS .. 474
SET BUFFERLINES .. 475
SET CARRIERDETECT .. 476
SET COLUMNS .. 477
SET CONNECTION ... 478
SET CONNECTMESSAGE ... 480
SET CONNECTRESULT .. 481
SET CURSOR .. 482
SET DATABITS .. 483
SET DDETIMEOUT ... 484
SET DECIMAL .. 485
SET DEFAULTSESSIONHANDLE ... 486
SET DIRECTORY .. 487
SET EMULATION ... 488
SET FKEYSSHOW .. 490
SET FLOWCONTROL ... 491
SET KEEPPRINTCHANNELOPEN .. 492
SET LOCALECHO .. 494
SET NETID... 495
SET OUTGOINGCR ... 496
SET PARITY ... 497
SET PASSTHROUGH .. 498
SET PASSWORD .. 499
SET PHONENUMBER... 500
SET RESULT .. 501
SET RETRY .. 502
SET RETRYDELAY ... 503
SET SENDDELAY ... 504
SET SIGNAL .. 505
SET SOUND .. 506
SET STOPBITS .. 507

xii

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

3
Commands

Commands, continued

Contents, continued

SET TERMCLOSE ... 508
SET TERMFONT ... 509
SET USERID .. 510
SET WILDCARD ... 511
SET WINDOWTITLE ... 512
SET WORDWRAP .. 513
SET XCLOCK ... 514
SET XSYSTEM .. 515
SETTINGS.. 516
SHOW .. 517
SPAWN ... 518
SWITCH ... 519
SYSTEM ... 521
TABLE CLEAR ... 523
TABLE CLOSE ... 524
TABLE COPY ... 525
TABLE DEFINE ... 527
TABLE LOAD .. 529
TABLE SAVE .. 530
TABLE SORT ... 531
TASKERROR .. 532
TASKSTOP ... 534
TIMER RESET.. 535
TITLE ... 536
TOOLBARHIDE .. 537
TOOLBARSHOW ... 538
TRANSFERS .. 539
WAIT CHAR .. 544
WAIT CLOSE ... 545
WAIT DELAY ... 546
WAIT ECHO .. 548
WAIT EDIT ... 549
WAIT PROMPT .. 550
WAIT QUIET ... 551
WAIT RESUME ... 553
WAIT SCREEN .. 554
WAIT STRING ... 555

Table of C
ontents

xiii

3
Commands

Commands, continued

Contents, continued

WAIT UNTIL .. 556
WHEN CANCEL ... 557
WHEN COLLECT ... 559
WHEN DISCONNECT .. 561
WHEN ECHO .. 562
WHEN ERROR .. 563
WHEN INPUT ... 564
WHEN QUIET ... 566
WHEN SCREEN .. 567
WHEN STRING... 569
WHEN TIMER ... 571
WHEN WINDOW .. 572
WHILE .. 573
WINDOW ACTIVATE .. 574
WINDOW ARRANGE ... 575
WINDOW CLOSE .. 576
WINDOW DEFAULT ... 577
WINDOW HIDE ... 578
WINDOW MAXIMIZE .. 579
WINDOW MESSAGE .. 580
WINDOW MINIMIZE .. 581
WINDOW MOVE ... 582
WINDOW OPEN .. 583
WINDOW RESTORE ... 585
WINDOW STACK .. 586
WINDOW UNHIDE ... 587
XFERCONFIG ... 588

Appendices
A Task Errors ..593

 .. 593

Task Errors .. 594
Task Errors, continued ... 595
Task Errors, continued ... 596
Task Errors, continued ... 597

xiv

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

Task Errors, continued ... 598

B New and Removed Commands and Functions599

 .. 599

New Commands and Functions .. 600
Removed Commands and Functions .. 601

C Quick Reference for Command and Function Syntax603

 .. 603

Index ..619

1
Introduction to the
Script Language

DCS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

16

The DCS Script Language is one of most powerful features of the DCS Connectivity Series. It provides for
the automation of frequently performed tasks while allowing for customizing DCS to the needs of your
organization. For example, you can:

 Present data from a host machine in a Windows interface that you design.

	Send commands and data to a host machine.

	Transfer files.

	Print data from a host machine locally.

	Access other applications using Dynamic Data Exchange (DDE).

	Execute complex logic.

	Respond to queries from a host machine.

	Simplify complex interactions with the host machine.

What You Will Learn

This chapter provides a general overview of DCS Script Language components beginning with
script file management concepts. The overview includes:

 Script statement syntax

 A discussion of labels, comments, functions, and commands

 An explanation of arguments and variables

 Information about basic programming practices

 Script debugging and error correction

Each DCS function and command are discussed in detail inChapter 2 Functions and Chapter 3
Commands, respectively.

DCS Script Language Overview

1 Introduction to the Script Language

17

The DCS Script Language is a compiled language. An operational script includes two files:

 Source file

The Source file is simply a text file containing all the script language commands necessary to
accomplish the script purpose. It can easily be created using DCS editing capabilities, but can
also be created using any type of program editor. It is a human-readable file, and cannot be
executed. The Source file is given a “.dcp” extension.

 Task file

The Task file is created from the source file. It contains DCS internal machine language gener-
ated from the source file. It is not a human-readable file, and is the only type of file that DCS
can execute. The Task file is given a “.dct” extension.

Scripts are created, edited, compiled, and executed in DCS with selections on the File, Edit, and Script
menus.

Creating and Editing Scripts

The first step in creating a new script is to create the Source document. Use the New selection on
the File menu to create the script document.

 To create a new script

1 On the File menu, select New.

2 On the expanded File menu, select Script.

An empty script file opens in the DCS window. All commands are entered in this file.

Creating, Compiling, and Executing a Script

Figure 1.1
New script
document

To create a script that automatically executes whenever DCS opens, save the script with the name
“autostrt.dcp”. When DCS starts, a task file in the Futuresoft\DCSeries\scripts directory with the
name “autostrt.dcp” is executed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

18

Creating, Compiling, and Executing a Script, continued

To edit a script, use the options available on the Edit menu.

Compiling and Executing

Before a script can be executed, it must be compiled. Compiling converts a script from a human-
readable form (a source file) to a machine-readable form (a task file).

 To compile a script

1 On the Script menu, select Compile.

If:

 You are currently editing a script that has not been previously saved, you are prompted
with the Save As dialog to save the script. Enter a name for the script and click Save.
The Script Compiler dialog appears.

 You are not currently editing a script, or if the active window is not a script window,
you are prompted with the Open dialog to open a previously saved script source (*.dcp)
file. Select the name of the file to compile and click OK. The Script Compiler dialog
appears.

 The script you are editing has already been saved, the Script Compiler dialog immedi-
ately appears.

Script Compiler Dialog

The Script Compiler dialog is used to compile a script document. The Script Compiler dialog
appears in the DCS application window. It includes the name of the source file and a check box
option for including line numbers.

Figure 1.2
Script Compiler
dialog

While DCS compiles the script, it checks for syntax errors. If no syntax errors are encountered,
the script is successfully compiled and saved as a task file with the .dct extension. The Script

1 Introduction to the Script Language

19

Compiler dialog disappears. If DCS encounters a syntax error, a message identifying the type and
location of the error appears in the Script Compiler dialog.

Creating, Compiling, and Executing a Script, continued

If you enable (check) Include Line Numbers, line numbers are placed in the compiled script. If
errors are encountered during compilation, the line number of the offending command is pro-
vided to help find the command in the script.

Also see: SHOW command

Highlight the error to correct and click Go To Error to jump to the error in the script. DCS shifts
focus to the script source and places the cursor at the location of the error. Click Stop to remove
the Script Compiler dialog and return to the script window.

Note: When a script is compiled, any changes made to the script are automatically
saved. If you make major changes to a script, use Save As on the File menu before
compiling the script and save the source file using a different name. If you do not,
you will be unable to recover any previous versions of the script file.

When a script has been successfully compiled, the script can be executed at any time by select-
ing Run on the Script menu. The source script does not need to be available for the task file to
execute. DCS executes the task file and stops if a task error is encountered or if Stop on the Script
menu is selected.

Figure 1.3
Script Compiler
dialog with er-
rors listed

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

20

Commands, Functions and Arguments

DCS Script Language statements are entered into a script document. Commands are executable state-
ments that perform specific actions. Most commands accept arguments that specify how the actions are to
be performed. Functions are executable statements that return a value, and therefore may be used as com-
mands or as part of an assignment statement. Command and function arguments can be specified by either
single operands, complex operands, or expressions of the specified type.

DCS Script Language statements require use of a specific syntax. Below are examples of a function state-
ment and a command statement.

Function Statement Syntax

Function statements begin with a function name and may include arguments. Function argu-
ments must be enclosed in parentheses.

Figure 1.4
Examples of
two function
statements

FILTER (String, SearchChars, ReplaceChars)

ArgumentsFunction Name

OptionalRequired

EOF ()

In Figure 1.4 above, the EOF function does not include any arguments. However, the () set must
be included in the statement. Also in Figure 1.4, the FILTER statement illustrates that some argu-
ments are required and some are optional.

Command Statement Syntax

Command statements begin with a command name and typically include arguments. However,
not all commands include arguments as seen in Figure 1.5 below with the CANCEL command.

RADIOGROUP (x, y, w,h) Default GroupName Command

ArgumentsCommand Name

Optional Required

CANCEL

Optional

Figure 1.5
Examples of
two command
statements

Notice in Figure 1.5 that some command arguments are enclosed in parentheses while others are
not. Notice too that some command arguments are required while others are optional.

1 Introduction to the Script Language

21

Expressions

Expressions consist of a single or multiple operands combined with the appropriate operator for
the specified type. Three three types of operands are available:

 String

 Numeric

 Boolean

The assignment operator (equivalent to the SET command) assigns a value to a variable. Values
can be numerics or strings (depending on the type of variable), or can be functions or expressions
which return a value.

Variable = Value ; Example Syntax

Also see: Variable Creation in this chapter

Example

This command:

%number = 2400

assigns the value “2400” (a single operand) to the integer variable %number.

This command:

$name = “Tim”

assigns the string value “Tim” to the string variable $name.

This command:

%availSpace = DISKSPACE ()

assigns a value to the integer variable %availSpace. The DISKSPACE function can be
used to specify the value argument since it returns a numeric value.

This command:

%val = (200/25) + (8*15)

assigns the value of the expression “(200/25) + 8*15)” to the variable %val.

Commands, Functions and Arguments, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

22

Several methods are available to continue a script line to the next physical line if needed. The method used
depends on the type of line to be continued.

Command Blocks

A command block is a set of commands that is treated as a single logical command. Command
blocks can be used to specify the COMMAND argument required by an IF, ELSE, WHEN,
WHILE, or DIALOG control command.

Command blocks consist of either:

 a set of commands separated by commas, or

 a set of commands preceded by a BEGIN command and followed by an END command.

If the command block is used to specify a WHEN command argument and consists of commands
separated by commas, the first command in the block must be on the same line as the WHEN
command.

These examples show two ways of writing the same script fragment:

Example 1

WHEN QUIET “5” INCREMENT %timeout_cnt
DISPLAY (0,0) “time out: “ | STR (%timeout_cnt)
IF (%timeout_cnt > 10)

DISPLAY (1,0) “terminating process”
RESUME

Example 2

WHEN QUIET “5”
BEGIN

INCREMENT %timeout_cnt
DISPLAY (0,0) “time out: “ | STR (%timeout_cnt)
IF (%timeout_cnt > 10)
BEGIN

DISPLAY (1,0) “terminating process”
RESUME

END
END

The command block is executed only when the WHEN QUIET command is activated.

Command Blocks

1 Introduction to the Script Language

23

Several methods are available for continuing lines within a script.

 To continue a line between script commands

To place more than one command on a line, use commas as shown below.

Example

IF $date = “03/25/2001”, $month = “March”, $day = “25”

Caution! Extensive use of commas may make it difficult to locate specific state-
ments and command blocks in the script.

 To continue a line between operands in an expression

Place the appropriate operator after the last operand and continue with the next operand on
the following line. The valid operator for strings is the concatenation operator (|). The valid
operators for numerics are +, -, *, /, and %. The valid operators for Boolean variables and
expressions are AND and OR.

Example

%sum = %apple + %orange + %peach + %banana

 To continue a line in the middle of a command

Place a backslash (\) at the end of the line and continue on the next line.

Example

TABLE DEFINE 0 FIELDS CHAR 10 CHAR 20 INT 15 \
INT 3 INT 15

 To continue a line containing IF, ELSE or WHILE commands

The lines of an IF, ELSE or WHILE command can be continued to show logical structure.

Example

IF $name = “Washington”
DISPLAY (0,0) $name | “ - President”

ELSE
BEGIN

DISPLAY (0,0) $name | “ - Vice President”
GOTO find_name

END
.
.
.
WHILE %time < 10

DISPLAY (0,0) “Please wait.”

If an IF, ELSE or WHILE command contains no command list, commands on the following
line are assumed to be a continuation of the line.

Line Continuation

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

24

Comments are non-executing statements that assist the reader of a script source file in understanding its
purpose and implementation. All characters on a line following a “;” (semicolon) are considered to be part
of a comment and are ignored by the compiler.

Example

;the following routine displays all phone number records
;
RECORD READ 0 AT 0 ;read first record
WHILE NOT EOF () ;stop if end of file

BEGIN
DISPLAY @R0.1
RECORD READ 0 ;read next record

END

Since comments are ignored by the compiler, they are optional; however, the use of comments is
recommended as a simple and straightforward way to document a script.

Comments

1 Introduction to the Script Language

25

Labels are non-executing statements that mark a location in a script to which the execution of a script can
branch. Labels allow you to employ structured programming techniques to create modular scripts (scripts
with subroutines). Scripts composed of modules tend to be easier to expand and debug, since each module
typically has a single purpose, single entry point, and single exit point.

Labels appear on their own line in a script and consist of an asterisk (*) followed by a series of characters
(alphanumeric characters and underscores), up to 32 characters long. A label cannot contain any spaces,
and is not case sensitive. If a label is the name of a subroutine, you can also include a list of arguments after
the label. However, the compiler ignores any other statements following a label on the same line.

Also see: Parameter Passing in this chapter

Example 1

#SecondaryNumber=False
*ConnectService

Set PhoneNumber = “555-1221”
%NumTries=0
Dial

While(not Connect())
Begin

Increment %NumTries
If %NumTries = 5
Begin

If SecondaryNumber
Begin
Dialog
Message “Unable to Connect”
Message “Script terminating”

Dialog End
Wait Delay “2”
Cancel
End

Dialog
Message “TR1 — No Connection”
Message “Trying Secondary Number”

Dialog End
Wait Delay “2
Perform SetNextNumber

End
End
.
.
.
*SetNextNumber
#SecondaryNumber=True
Set PhoneNumber = “555-1212”
Goto ConnectService
Return

Labels

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

26

The script segment in Example 1 performs a loop. If it fails to connect, it calls the SetNext-
Number subroutine to attempt a second number. If the second attempt to connect is unsuccess-
ful, the script displays an error dialog and then ends script execution.

Example 2

;Main Routine
;The variables $String, %Int, and !Real are defined in
;this section of the script.
.
.
.
Perform SubRoutine ($String, %Int, !Real)
;The Main Routine starts a subroutine and gives default
;values to all or some of the variables of the subroutine
;with the list of variables between the parenthesis.
;the rest of the main routine
.
.
.
Cancel ;End of the script

*SubRoutine ($Name, %NumHours, !AvgDaily)
;a subroutine Initially the variable $Name has the same
;value as $String, %NumHours has the same value as %Int,
;and !AvgDaily has the same value as !Real.
.
.
.
;At the end of the subroutine, the subroutine will
;replace the contents of $String, %Int, and !Real with
;the contents of $Name,%NumHours, or !AvgDaily,
;respectively.
Return ;resume execution after Perform

Example 2 contains a module, or subroutine. A standard subroutine usually has:

 one entry point (the label, which may or may not have arguments), and

 one exit point (usually the RETURN command).

If there are variables in the main routine of the script that the subroutine should act on, the
PERFORM command should explicitly pass the variables to the subroutine by including both the
name of the subroutine (the label) and a list of the variables the subroutine should act upon.

After the subroutine finishes its tasks, the main routine continues at the command following
the PERFORM command which started the subroutine. Because the contents of the subroutine
variables ($Name, %NumHours, and !AvgDaily) are the same as the main routine variables
($String, %Int, and !Real), when the subroutine returns, the main routine variables take
on the value of the subroutine variables.

Labels, continued

1 Introduction to the Script Language

27

A string can be a string function, a string variable, or a string constant. Complex strings and string expres-
sions are created by joining two or more strings with valid operators.

String Functions

A string function is simply a function that returns a string. Refer to the list of string functions in
Appendix C Quick Reference.

String Constants

A string constant consists of a series of characters enclosed within single or double quotation
marks, e.g., ‘string’ or “string.” String constants may contain a maximum of 254 characters.

To embed a quotation mark in a string, alternate the use of single and double quotation marks,
e.g., “Arnold’s car” or ‘^$P “routine_a”’. ASCII control characters can be embedded in a string
by including a backslash (\) and a three-digit octal code, or a caret (^) and an ASCII character.
An ESCAPE can be represented by either “\033” or “^[“. A carriage return can be represented by
either “\015” or “^M”.

A null string is written as double quotes with nothing between them (“”). The quotation marks
do not appear when a null string is displayed.

Named String Variables

A named string variable consists of a dollar sign ($) followed by a variable name. Variable names
may contain a maximum of 32 alphanumeric characters or underscores (for example, $first_
name) and are not case sensitive. As with string constants, a string variable may contain a maxi-
mum of 254 characters.

Variables can be referenced indirectly by using another variable to represent the variable name.
For example, if $day is an existing variable and contains the value Monday, creating the variable
$$day creates the variable $Monday.

In addition to the named string variable, several system variables are available to represent specific
types of string data.

Record Buffer Variables

A record buffer variable is a string that contains a record. A record is a sub-unit of a table. A table
is a structure into which a file can be loaded. Contents of the file can then be manipulated. Simi-
larly, a table collects and organizes masses of data into a single location. The data is then saved to a
file. A single record buffer variable may have a maximum of 254 characters.

Contents of a table record cannot be manipulated directly. Record manipulation is performed
with the RECORD WRITE and RECORD READ commands to place data into and to retrieve
data from a table, respectively. When DCS reads from a table, it places the contents of the table
record into the record buffer variable for that table, and when DCS writes to a table, it places the
contents of the table’s record buffer variable into a record in the table. The record buffer variable
is a preparation area where you manipulate the contents of a table record. Each table defined by a
script has its own record buffer variable.

Strings

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

28

DCS has two types of tables:

 Text tables which have variable-length records, and

 Structured tables which have fixed-length records composed of fields.

The syntax of the record buffer variable depends on the type of table with which it is associated.
Record buffer variables have the following syntax:

@RTable ;A record buffer variable for a text table.
@RTable.Field ;A record buffer variable for a structured table.

The Table argument is an integer indicating the record buffer variable for a table defined in a
script. DCS can have up to 16 tables defined at one time, and the Table argument must be an
integer from 0 to 15. The optional Field argument is an integer identifying a subdivision of a re-
cord buffer variable for a structured table. A structured table may have a maximum of 255 fields,
and the Field argument must be an integer from 1 to 255.

DCS treats the record buffer variable in a text table similarly to a named string variable. The vari-
able only contains the characters that have been assigned to it, and the number of characters in
the variable changes with the characters assigned to it.

Consider the following assignments:

@R0 = “This is text”
;The variable contains 12 characters including two
;spaces.

@R0 = “Numbers: 12345”
;The variable now contains 14 characters including
;one space.

@R0 = @R0 | “More characters”
;The variable now contains its previous 14
;characters plus 15 more.

These examples illustrate that the record buffer variable for a text table only contains the charac-
ters that were assigned to the variable.

DCS handles the record buffer variables for structured tables differently from text tables, because
it composes structured table records of fields. Table records are similar to rows in a spreadsheet,
and the record fields are similar to the cells in the rows. In a structured table each field must be
associated with a data type and size. The data types for fields in a structured table are character
(CHAR), real numbers (REAL), and integer numbers (INT). Because you determine the size of
each field, the records in a structured table are always the same size.

All record buffer variables and any fields within them are strings. However, a script defines the
fields of a structured table record with the TABLE DEFINE command. Each field can be one of
the following types: character, integer, or real.

Strings, continued

1 Introduction to the Script Language

29

For example, the TABLE DEFINE command might appear in a script as follows:

TABLE DEFINE 0 FIELDS CHAR 10 REAL 6 INT 9

The keywords and numbers after the word FIELDS delineate the fields of the record for the
table numbered zero. Each record in the table defined above has three fields, and the record buffer
variable for this table has the same structure. The keywords CHAR, REAL, and INT indicate the
logical data type of the field (characters, real numbers, and integer numbers, respectively). These
types are a part of the definition of a structured table to allow you to deal with the data in a field
in a logical fashion. The numbers after the keywords indicate the size of the fields. The first field
contains ten characters, the second field contains six characters, and the third field contains nine
characters. The size of the fields are the same no matter what you have assigned to the fields.
However, you may define a field with space for a maximum of 254 characters.

If the data you assign to a field in a record does not fill the field, DCS pads the unassigned posi-
tions with spaces. The fields defined as character data are left justified. For example, consider the
following assignments:

TABLE DEFINE 0 FIELDS CHAR 10 REAL 6 INT 9
;creates structured table zero

@R0.1 = “Numbers: 12345”
;The variable contains ten characters: Numbers: 1

@R0.1 = “Text”
;The variable contains ten characters: the word Text
;and six trailing spaces

@R0.1 = @R0 | “More characters”
;The variable contains the previous ten characters:
;Text and six trailing spaces

@R0.1 = TRIM (@R0) | “More characters”
;The TRIM function deletes the trailing spaces and
;the variable now contains another set of ten
;characters: TextMore c

However, if a field has a numeric definition (INT or REAL), DCS right justifies the data in the
field and pads the unassigned positions with preceding spaces. If the numbers placed in a field
have more digits than a field has positions, DCS truncates the rightmost, or least significant,
digits.

Strings, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

30

 Consider the following examples:

@R0.2 = “1.234”
;The variable contains six characters: one preceding
;space and 1.234

!RealNum = Num (@R0.2) + Num (@R0.2)
;The NUM function transforms the string into numeric
;values. The result is 2.468 and is placed in the
;variable !RealNum

@R0.2 = “67.54321”
;The variable contains six characters: 67.543
;The characters 2 and 1 are truncated

@R0.3 = “12345”
;The variable contains nine characters: four spaces
;and 12345

@R0.3 = “998765432194”
;The variable contains nine characters: 998765432.
;The characters 194 are truncated

!RealNum = Num (@R0.2) + Num (@R0.3)
;The NUM function transforms the strings into
;numeric values. The result is 998765499.543 and is
;placed in the variable !RealNum

Using Record Buffer Variables

This command creates structured Table 6. It has three fields.

TABLE DEFINE 6 FIELDS CHAR 10 INT 3 INT 5
@R6 = “test 123 38”

The record buffer variable for this table is @R6. To access each field of Table 6 directly, the follow-
ing record buffer variables are possible:

@R6.1 accesses the first field (CHAR 10),

@R6.2 accesses the second field (INT 3), and

@R6.3 accesses the third field (INT 5).

To access all of the fields of @R6, do not include the period and the field number; rather, include
a string of length equal to the combined lengths of the fields. If the data in a field contains fewer
characters than the defined field length, insert space characters to the right or the left of the data
to fill the field to its exact length. This ensures that the correct data is placed into the correct field.

Strings, continued

1 Introduction to the Script Language

31

In the example on the previous page, @R6 is treated like an 18-character string (the fields CHAR
10, INT 3, and INT 5 have a combined length of 18):

 The data in field CHAR 10, test, contains only four characters, thus six spaces are added
to the right of test;

 The data in field INT 3, 123, contains three characters, thus no spaces are added; and

 The data in field INT 5, 38, contains two characters, thus three spaces are added to the
left of 38.

These commands display the entire first record of Table 6 in the terminal window:

RECORD READ 6 AT 0
;read table six at the first record
DISPLAY @R6

These commands modify the contents of Table 6:

@R6.2 = “55”
RECORD WRITE 6 AT 2

The first command assigns the character string 55 to the second field of the record buffer variable
for Table 6. The second command writes all of the current fields in the record buffer variable to
table six and in the third record position. The command phrase AT 2 is the third record position,
because the record positions start at 0 (zero).

DCS allows a script to use integer variables for the Table and Field arguments, when referring to
record buffer variables.

Example

These commands create a loop which sequentially displays each field of the current record.

%TableNum = 7
TABLE DEFINE %TableNum FIELDS INT 3 CHAR 10 CHAR 10
TABLE LOAD %TableNum “DATA.DCM” AS TEXT

;Places the contents of the file into the table.
RECORD READ %TableNum
%Field = 1
WHILE %field <= 3
BEGIN

DISPLAY @R(%TableNum).%field | “^M^J”
INCREMENT %field

END

Also see: Tables, Records, and Data Manipulation in this chapter

Strings, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

32

Function Key and Function Key Title Variables

A function key variable accesses the string contents of the command portion of a function key. A
function key command may have a maximum of 42 characters. The variable observes the follow-
ing syntax:

@Fkey

The Key argument is a numeric specifying the number of the function key. Since eight function
keys on each of four levels may be defined, the Key argument must take on a value from 1 to 8.
The Key argument may also be specified by a numeric variable containing a valid value. The func-
tion key level is specified using the LEVEL command.

Also see: LEVEL command

The function key title variable accesses the string title of a function key. The title of a function
key can have a maximum of 18 alphanumeric characters. Function key title variables observe the
following syntax:

@Tkey

The Key argument is a numeric specifying the number of the function key. DCS allows the
creation of eight function keys (numbered 1 through 8) on each of four levels. The Key argu-
ment may also be specified by a numeric variable containing a valid value. DCS also allows you
to modify the title of the “Level: n” key, which changes the function key level. Thus the Key argu-
ment must have a value from 1 to 9, with 9 indicating a title change for the “Level: n” key.

@T9 = “Next Level”
;Changes the title of the Level button.

@T9 = “”
;Changes the Level button title to its default.

Function key and function key title variables may be used as arguments in all functions and com-
mands that accept string variables.

Strings, continued

1 Introduction to the Script Language

33

Example

These commands:

LEVEL 1
@T1 = “NUMBER”
@F1 = “17135552334”
@T2 = “PASSWORD”
@F2 = “mysecretcode”
LEVEL 2
@T%num = “MAIL SYSTEM”
@F%num = “MAIL^M”

define two titled function keys on Level 1 and one key on Level 2:

 The first key on Level 1 has the title NUMBER and contains the string
“17135552334”, which represents a phone number.

 The second key on Level 1 has the title PASSWORD and contains the string “myse-
cretcode”.

 For Level 2, only the key specified by the integer variable %num is defined. In this case,
the value of %num must be within the valid range for the title and function key vari-
ables.

A function key command can specify a string to send to the remote system or specify a special
function. Strings can include valid META keys for the connected session as well as the special
line control strings (^M and ^J). The following special functions correspond to commands in the
DCS script language:

^$B = BREAK
^$E = EXECUTE
^$L = LEVEL
^$P = PERFORM

The BREAK, EXECUTE, LEVEL, and PERFORM commands have analogous commands in the
script language. PERFORM and EXECUTE can pass parameters in the script language, but not
from a function key.

Also, the above PERFORM and EXECUTE commands must use the far target addressing form for
a script subroutine. A copy of the script with the desired subroutine will be loaded and executed
to support the selected function key. The syntax specified in this DCS Script Language Reference
should be used for these commands.

Strings, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

34

Settings Variables

The Settings variable is similar to the named string variable, except that it is stored as part of a
session file, and its contents depend on the loaded session file. A Settings variable may hold a
maximum of 42 characters. A Settings variable observes the following syntax:

@Sn

The n argument specifies the desired settings variable number. Since eight settings variables may
be defined, the n argument must take on a value from 1 to 8. The n argument may also be speci-
fied by a numeric variable containing a valid value.

If a settings variable is saved in a session file, the contents of that variable are restored the next
time the session file is loaded. If the value is changed during script execution, then the session file
must be saved for the settings variable to retain the new value.

Settings variables may be used as arguments in all functions and commands that accept string
variables.

Example 1

These scripts:

Script 1

@S1 = “13121234567”
@S2 = “password-1”
SAVE “chicago”

Script 2

@S%idnum = “17131234567”
@S%pass = “password-2”
SAVE “houston”

assign values to the settings variables @S1 and @S2. Those values are then saved in the speci-
fied session files. In the second script, the setting variable numbers are specified by integer
variables. In this case, the values of %idnum and %pass must be within the valid range for
setting variables.

Strings, continued

1 Introduction to the Script Language

35

Example 2

This script:

DIALOG
EDITTEXT “Enter City”
BUTTON DEFAULT “OK” RESUME

DIALOG END
WAIT RESUME

IF EXISTS (Directory (Settings) | EDITTEXT (1))
BEGIN

LOAD EDITTEXT (1)
END
ELSE

CANCEL
DIALOG CANCEL
DIAL @S1
WAIT STRING “Password”
SEND @S2 | “^M”

instructs DCS to dial a phone number and send a password string. The dialog box deter-
mines which city the user wants to call. A LOAD command loads the appropriate session file
for the city chosen. The DIAL and SEND commands then use the values appropriate for that
city.

String Expressions

String expressions containing multiple operands are created by joining two or more strings with
the concatenation operator (|). String expressions differ from complex strings only in that they
are not enclosed in parentheses and cannot be used as arguments where a single string operand is
expected.

Example

$date = $month | “ “ | $day | “, “ | $year

If the string variables $month, $day, and $year contain the values January, 8, and 2001,
respectively, the string variable $date contains the value “January 8, 2001”.

A maximum of 254 characters can be placed in a string variable. If the number of concat-
enated characters exceeds 254, additional characters are ignored.

Strings, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

36

Strings, continued

Complex Strings

A complex string consists of multiple string operands joined by the concatenation operator (|),
and enclosed in parentheses. A complex string may be used as an argument where a single string
operand is expected.

Example

In this example:

%length = LENGTH ($firstname | “ “ | $lastname)

if the string variable $firstname contains “George”, and the string variable $lastname
contains Washington, the numeric variable %length contains the value 17 (the space
between each string is included).

1 Introduction to the Script Language

37

A numeric operand consists of a numeric function, a numeric variable, or a numeric constant preceded
by an optional modifier. Complex numerics and numeric expressions are created by joining two or more
numeric operands with valid operators. DCS supports both integer and real numeric operands.

Numeric Functions

A numeric function returns a value that is a numeric. Refer to the grouping of numeric functions
in Appendix C Quick Reference for a list.

Numeric Constants

A numeric constant consists of an integer or real number, such as 25 or 3.14. Decimal numer-
ics are represented as n (for example, 234). Hexadecimal numerics are represented as 0xn (for
example, 0x3D). Octal numbers are represented as \nnn (for example, \033).

Named Numeric Variables

An integer numeric variable consists of a percent sign (%) followed by a variable name. A real
numeric variable consists of an exclamation point (!) followed by a variable name. Variable names
can contain up to 32 alphanumeric characters or underscores (for example, %bytes, !cash), and
are not case sensitive. You may reference variables indirectly by using another variable to repre-
sent the variable name. For example, if %order is an existing variable, and contains the value 1,
creating the variable !%order creates the variable !1.

There is one valid numeric modifier: the unary minus. It converts a numeric to its opposite value,
and is equivalent to multiplying the numeric by -1 (negative one).

Example

-%num

If the numeric variable %num contains -23, -%num evaluates to 23.

It is possible to convert a numeric type from an integer to a real, or from a real to an integer.
When a real value is converted to an integer value, all decimal places are truncated, not rounded.
Values can be converted using the REAL and INT functions, or by directly assigning a real or
integer value to the desired variable type.

Numerics

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

38

Numeric Expressions

Numeric expressions are created by joining two or more numerics with a valid operator (+, -, *,
/, %). Numeric expressions differ from complex numerics only in that they are not enclosed in
parentheses and cannot be used as arguments where a single numeric operand is expected.

Example

In this example:

%sum = %wheat + %corn + !rice

the integer numeric variable %sum is set to the sum of the three numeric variables.

In this example of modulus division:

%remain = 25 % 7

the integer variable %remain is set to 4, the remainder of the modulus division operation.

Complex Numeric Variables

A complex numeric variable consists of multiple numeric operands joined by a valid operator.
The valid numeric operators are: +, -, *, /, %. These operators correspond to the operations of
addition, subtraction, multiplication, division, and modulus. The multiplication, division, and
modulus operators take precedence over the addition and subtraction operators, but parentheses
can be used to alter this precedence. The modulus operation is not defined for real numerics. The
result of all numeric operations is a real numeric, but can be converted to an integer either by us-
ing the INT function, or by storing the result as an integer numeric variable.

Example 1

In this example:

%integer = 10/3

even though the result of the operation 10/3 is a real value, this command stores the result in
an integer numeric variable. The real result is, therefore, truncated and the integer numeric
variable contains the value 3.

In this example:

!percentage = 10/3

the real numeric variable !percentage contains the value 3.333333333333333. Real
numerics precise to the 15th decimal place.

Numerics, continued

1 Introduction to the Script Language

39

A complex numeric variable may be used as an argument where a single numeric operand is
expected.

In this example:

%number = RANDOM (%range - 1)

if the integer variable %range contains the value 10, %number contains a random number
generated in the range from 0 to 8 inclusive.

Numerics, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

40

A Boolean may be a Boolean function, a Boolean variable, a Boolean constant, or a relational expression
with an optional modifier. Complex Boolean and Boolean expressions are created by joining two or more
Boolean operands with valid operators.

Boolean Functions

A Boolean function returns the value TRUE or FALSE. Examples of Boolean functions are:

 CONNECT

 ERROR

 ZOOMED

Refer to the Boolean Functions group in Chapter 2 Functions for a list of all Boolean functions.

Boolean Constants

A Boolean constant is specified by the keyword TRUE or FALSE. The keyword is not enclosed
within quotation marks as in the case of a string constant.

Named Boolean Variables

A Boolean variable consists of a number sign (#) followed by a variable name. Variable names can
contain up to 32 alphanumeric characters or underscores (for example, #state) and are not case
sensitive. Variables can be referenced indirectly by using another variable to represent the variable
name. For example, if %x is an existing variable and contains the value 5, creating the variable
#%x creates the Boolean variable #5.

Relational Expressions

A relational expression is created by comparing two strings or two numerics using one of the fol-
lowing relational operators:

Operator Relationship

 < Less than

 > Greater than

 = Equal to

 == Equal to

 <> Not equal to

 != Not equal to

 <= Less than or equal to

 >= Greater than or equal to

There is one valid Boolean modifier: NOT. It converts a Boolean to its logical opposite.

Booleans

1 Introduction to the Script Language

41

Example

IF %income > %net
DISPLAY (0, 0) STR (%income - %net) | “dollars earned”

ELSE
DISPLAY (0, 0) “No profit made this quarter”

In this example, %income > %net is the relational expression evaluated. If it evaluates to
TRUE, the amount of profit is displayed. If it evaluates to FALSE, the message “No profit
made this quarter” is displayed.

Boolean Expressions

Boolean expressions containing multiple operands are created using the Boolean operators AND
and OR. NOT may also be used as an operator and has precedence over AND and OR. Boolean
expressions differ from complex Booleans in that they are not enclosed in parentheses and may
not be used as arguments where a single Boolean operand is expected. There are no functions or
commands that expect only single Boolean operands; therefore, complex Booleans and Boolean
expressions may be used interchangeably.

Example

This Boolean expression:

NOT EOF ()

evaluates to TRUE if the EOF function returns FALSE.

This Boolean expression:

$state <> “TEXAS”

evaluates to TRUE if $state contains a string other than TEXAS.

This Boolean expression:

%num <= 100

evaluates to TRUE if %num contains a numeric value less than or equal to 100.

This Boolean expression:

$state <> “TEXAS” AND $state <> “FLORIDA”

evaluates to TRUE if $state contains any string other than TEXAS or FLORIDA.

This Boolean expression:

%1 < 25 OR %1 > 50

evaluates to TRUE if %1 contains any numeric value other than those within the range 25-
50, inclusive.

Booleans, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

42

Booleans, continued

Complex Booleans

A complex Boolean consists of multiple Boolean operands joined by a valid operator. The valid
Boolean operators are AND and OR. A complex Boolean consisting of operands joined by AND
is TRUE if all associated operands are TRUE. A complex Boolean consisting of operands joined
by OR is TRUE if any inclusive associated operands are TRUE. The AND operator takes prece-
dence over the OR operator, but parentheses can be used to alter this precedence.

Example

This Boolean expression:

(%1 < 100 AND %2 < 100) OR ($state = “FLORIDA”)

evaluates to TRUE if both %1 and %2 contain numeric values that are less than 100, or
$state contains the string “FLORIDA”, or if both statements are true.

1 Introduction to the Script Language

43

This section refers to several forms of the defined argument types. These argument types appear frequently
as arguments for the commands and functions defined in Chapter 2 Functions and Chapter 3 Com-
mands.

File Names

File name arguments are string arguments used to specify any file name acceptable to the operat-
ing system. File name arguments observe the following syntax:

Filename = drive: \path\ path\...\ filename.ext

File name arguments can be further specified as either Source or Destination arguments. A Source
argument specifies a file name containing the data to be exported. A Destination argument
specifies a file name into which data is imported. Source and Destination arguments observe the
following syntax:

Source = drive: \path\ path\...\ filename.ext

Destination = drive: \path\ path\...\ filename.ext

Path and File Names

Path and file names may be represented in the DCS Script Language by:

 String constants

 String variables

 String expressions

 Complex strings

A sequence of characters consisting of a backslash (\) followed by three octal digits is interpreted
as a control character. Therefore, you must be careful when specifying path and file names that
begin with numerals. To specify a path that begins with three numerals, a double backslash (\\)
followed by the three numerals must be used.

For example, you would specify:

LAUNCH “G:\\123W\\123W.EXE”

to launch Lotus 1-2-3 from G:\123W\123W.EXE.

Table Arguments

Table arguments are numeric arguments used to specify a table number. Table arguments observe
the following syntax:

%Table = Numeric

The Numeric argument must be a numeric operand (constant, variable, expression, or function)
from 0 to 15, corresponding to one of the available table structures. For more information about
tables, see Tables, Records, and Data Manipulation in this chapter.

Special Argument Types

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

44

Target arguments are used to reference a label in an executable script file. A target argument can be either a:

 Near target

 Far target

Near Targets

A near target references a label within the current script. The near target argument is a set of char-
acters that specify the desired label. The characters are not enclosed in quotation marks as in the
case of a string constant. Near target arguments use the following syntax:

COMMAND Label

where COMMAND is one of the following commands:

 EXECUTE

 PERFORM

 GOTO

and where Label is a string.

Near targets are resolved at compile time, and therefore execute faster than far targets. A syntax er-
ror occurs during compilation if the designated near target is not defined in the script.

Note: When a PERFORM or EXECUTE command is assigned to a function key, the
target must always be in far target format and must include both the name of the
script and the label (even if the label is within the same script as the KEY com-
mand).

Also see: Function Key Variables in this chapter

 KEY command

Special Argument Types, continued

1 Introduction to the Script Language

45

Special Argument Types, continued

Example

In this example:

*ReadLoop
RECORD READ 0 at 0

;beginning of loop
While not EOF ()
Begin

Display @R0
Record Read 0

End
Perform end_read
.
.
.
Cancel

*end_read
Display “End of table reached”
Return
;end of script execution

near targets are used as arguments for the PERFORM command. A record is read from Table
0 (zero). It then displays that record in the terminal window. When the end of file is reached,
the EOF function returns TRUE and execution branches to the line labeled *end_read,
where a closing message is printed and script execution is terminated.

Far Targets

Far targets are resolved during execution, so they can reference a label within the current script or
within another script. The far target argument is a string expression specifying an optional script
name and label. If the designated far target is undefined, a critical error is generated during script
execution. Far target arguments observe the following syntax:

 COMMAND “Script*Label”

where COMMAND is one of the following commands:

 EXECUTE

 PERFORM

 GOTO

where Script is the full file name of a compiled script, and

where *Label is a label found in Script.

A far target must include at least one of the two arguments, except as noted below. If the Script
argument is not included, DCS defaults to the current script. If the Label argument is not in-
cluded, execution begins at the first line in the specified script.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

46

Note: In cases where you wish to assign a PERFORM or EXECUTE command to a
function key (see both function key variables and the KEY command), the target
must always be in far target format, and must include both the name of the script
and the label (even if the label is within the same script as the KEY command).

Example

*readloop
RECORD READ 0 at 0

;Beginning of Loop
While not EOF ()
Begin

Display @R0
Record Read 0

End

Display “End of table reached”
Perform “Dialog*ReadComplete”
Cancel
;end of script execution

This script accomplishes the same task as the near target example, but the target is now a
message box from another script. A record is read from Table 0 and then displayed in the
terminal window. If the end of the table is reached, the EOF function returns TRUE, and
displays a closing message. Execution then branches to the line labeled ReadComplete in
the script Dialog and upon return this script ends.

Example

In this example:

WHILE NOT EOF ()
BEGIN

RECORD READ 0
IF ERROR ()

GOTO error ;error is a near target
END
PERFORM “table.dct” ;call another script
CANCEL ;end script after executing “TABLE.DCT”

*error
DISPLAY “Error Encountered ^M”
CANCEL

all records from Table 0 (zero) are read and then the script “TABLE.DCT” is performed. If
an error occurs during the record read, execution branches to the line labeled *error.

Targets, continued

1 Introduction to the Script Language

47

Numeric variables, Boolean variables, and string variables (other than the system variables @R, @F, @T,
@S, ConnectMessage, ConnectResult, DefaultSessionHandle, NetID, Password, Phonenumber, Result,
and UserID) must be created (assigned a value) before they are used.

Direct Variables

A command that assigns an initial value to a variable is considered to have created that variable.
Several commands can create variables:

 SET

 ARGUMENTS

 COLLECT

 PARSE

 FILE CREATENAME

 FILE OPENNAME

 (DDE) REQUEST

 WHEN ECHO

 WHEN INPUT

The assignment operator (=) may also be used to assign an initial value to a variable. It assigns the
value on the right of the equal sign to the variable to the left of the equal sign:

$name = “Lucy”

String variables are created using any of the above commands. Numeric and Boolean variables are
created using:

 Assignment operator (=)

 ARGUMENTS command

 SET command

All other commands and functions using variables as arguments must use variables that were
previously created using one of the above commands.

Examples

In this example:

COLLECT $DataIn
DISPLAY $DataIn

the variable $DataIn is created during the execution of the COLLECT command, and can
subsequently be used by the DISPLAY command.

Variable Creation

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

48

This script:

Record Read 0 At 0
While not EOF ()
Begin

Increment %count
Display “Record “ | STR (%count) | “ = “ | @R0 | “^M”
Record Read 0

End

causes an execution error because %count was not created before being used as an argument
for the INCREMENT command. To correct this error, %count must be given an initial
value by a SET command or the assignment operator. The following script corrects the error.

In this script:

%count = 0
Record Read 0 AT 0
While not EOF ()
Begin

Increment %count
Display “Record “ | STR (%count) | “ = “ | @R0 \
 | “^M”
Record Read 0

End

because the INCREMENT command does not create variables, this script corrects the previ-
ous script by creating the variable %count using the assignment operator (=) before it is
used by the INCREMENT command.

Indirect Variables

Variable creation can also be accomplished by using existing variables to create new ones. These
are known as indirect variables.

Indirect variable names are created using integer (%) or string ($) variable types. This is done
by placing the variable type signifier at the beginning of the existing variable. For example, if
$varname=“x” and %$varname=1, then the value of %x will be 1.

String and integer numeric variables may be used to create indirect variable names for string,
numeric and Boolean variables. A Boolean variable cannot be used to create another variable.
Integer numeric variables may also be used to create indirect variables for system, function
key titles, function key assignments, and record variables. For example, if %index=3 and
@s(%index=“secret”, then @s3 will be assigned the string secret.

Indirect variables provide flexibility in coding a script. A change in the value of an indirect vari-
able is reflected throughout the code, thus changing any variable with which it is associated. This
can make it easier to maintaining a script, or allow the script to respond to input from different
users.

Variable Creation, continued

1 Introduction to the Script Language

49

Symbols are characters other than alphabetical or numerical characters (punctuation, for example) which
are used to indicate a special condition or to indicate a particular variable type. Many symbols also func-
tion as operators.

Symbols

Available symbols include:

* (asterisk) : (colon) # (number sign) ? (question mark)

@ (at sign) , (comma) () (parentheses) “ (quote, double)

\ (backslash) $ (dollar sign) % (percent sign) ‘ (quote, single)

^ (caret) ! (exclamation point) . (period) ; (semicolon)

* (asterisk)

Asterisks signal a label. Labels indicate subsections and subroutines in a script.

Examples

In this example:

IF ERROR ()
BEGIN

PERFORM Error
END
DISPLAY “OK” | “^M”
CANCEL

*Error
DISPLAY “Error” | “^M”
CANCEL

execution branches to *error and displays “Error” if the ERROR function is set to
TRUE; otherwise, “OK” is displayed, and script execution is terminated.

Asterisks are also the default wildcard character used to represent 0 (zero) or more arbitrary
characters. In this example:

%Row = 0
$File = Route (directory(task)|”*.DCP”)
While not Error ()
Begin

Display (%Row, 0) $File | “^M”
Increment %Row
$File = Next ()

End

all script source files in the current working directory are displayed. The wildcard (*) used in
the path argument of the ROUTE function is used to select any file that has the DCP (*.dcp)
extension.

Symbols

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

50

@ (at sign)

“At” signs are used to indicate specific system string variables.

Examples

@R6.2 = “Tuesday”
;Record Buffer Variable

@F3 = “555-2327”
;Function Key Variable

@T3 = “Number”
;Function Key Title Variable

@S4 = “Remote”
;Settings Variable

\ (backslash)

Backslashes are used to:

 Continue a command from one line to the next:

TABLE DEFINE 0 FIELDS CHAR 10 \
CHAR 20 INT 15 INT 3 INT 15

 Indicate octal numerics:

%octal = \067

 Separate drive designations, directories, and file names in DOS path names:

$path = “C:\DCSERIES\SCRIPTS\”
$file = ROUTE ($path | “*.*”)

^ (caret)

Carets are used to embed ASCII control characters in a string.

In this example:

@F3 = “^[LOGON ^M”

carets are used to assign a string containing an escape and a carriage return to a function key.

: (colon)

Colons are used after the drive letter designation in DOS path names:

$path = ROUTE (“C:\DCSERIES*.*”)

Symbols, continued

1 Introduction to the Script Language

51

, (comma)

Commas are used to:

 Continue a command block from one line to the next without using a BEGIN and END
pair:

IF $date = “03/25/94”
SET $month “March”,
SET $day “25”,
SET $year “1994”

 Separate parameter lists in function calls.

$Last = substr ($last, 1, 1)

$ (dollar sign)

Dollar signs indicate a named string variable:

$state = “Texas”

! (exclamation point)

Exclamation points indicate a real numeric variable:

!pi = 3.1415926535897

(number sign)

Number signs (or pound signs) are used to indicate Boolean variables:

#selected = TRUE

() (parentheses)

Parentheses are used to:

 Enclose function arguments as in this example:

SEARCH (0, 3, 20, “Texas”)

 Control the order in which an expression is evaluated:

!num1 = 3 + 4 / 10 + 8 * 5
!num2 = ((3 + 4) / 10 + 8) * 5

In this example, !num1 evaluates to 43.4, but !num2 evaluates to 43.5, due to the use of paren-
theses to change the order of evaluation.

Symbols, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

52

% (percent sign)

Percent signs indicate an integer numeric variable:

%row = 3

. (period)

Periods indicate the decimal place in a (decimal) real numeric operand:

!number = 342.77

Periods are also used as DOS file extension separators:

$file = ROUTE (“LOGON.DCT”)

Periods also specify a table field in a record buffer variable:

@R12.4 = “1001”

? (question mark)

Question marks are the default wildcard character used to represent any single arbitrary character:

%Row = 0
$File = Route (directory(task) | “*.DC?”)
While not Error ()
Begin

Display(%Row, 0) $File | “^M”
Increment %Row
$File = Next ()

End

The ? wildcard used in the path argument of the ROUTE function is used to select any file whose
extension begins with “DC” and is three letters in length.

” (quotation mark, double), ‘ (quotation mark, single)

Both single and double quotation marks are used to enclose strings. To use quotation marks
within a string, alternate single and double quotes:

$state = “Texas”

In this example, $state contains the characters Texas.

$quote1 = ‘“Y’all come and see us!”’
$quote2 = ‘“‘ | “Y’all come and see us!” | ‘“‘

In this example, the script line containing $quote1 would not compile, since the single and
double quotes are unbalanced. The characters “Y (a double quote and a capital Y) are enclosed by
two single quotes; however, the string all come and see us! ends with a double and sin-
gle quote. On the other hand, the script line containing $quote2 will compile, and $quote2
will contain a string that is composed of the alphabetic characters and single quote enclosed in

Symbols, continued

1 Introduction to the Script Language

53

double quotes (“Y’all come and see us!”). In the script line, the double quotes are enclosed by
single quotes and joined with the main string by concatenation.

; (semicolon)

Semicolons begin a comment (useful for internally documenting a script). All characters on a line
following a semicolon are ignored by the compiler:

;Script File Finder
;
$file = ROUTE (“*.DC?”)
;returns name of file

Symbols, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

54

Operators

Operators are either a single character or a group of characters that represents arithmetic, string or logical
operations on the operands within an expression; plus the assignment operator, which creates or modifies a
variable and is equivalent to the SET command.

Available operation symbols and Boolean syntax include:

+ add = assign | concatenate % modulus

- subtract AND == equal to <> not equal to

* multiply OR > greater than < less than

\ divide NOT >= greater than or equal to <= less than or equal to

+ (add)

The plus sign is the addition math operator:

%sum = 34 + 12 + 3

- (subtract)

The minus sign is the subtraction math operator:

%sum = 34 - 12 - 3

It can also be used as the unary negative operator:

%num = -1

* (multiply)

The asterisk is the multiplication math operator:

!result = 27.2 * 18

Multiplication operations are evaluated before addition and subtraction operations in an expres-
sion.

/ (divide)

The slash is the division math operator:

!result = 27.2 / 18

Division operations are evaluated before addition and subtraction operations in an expression.

1 Introduction to the Script Language

55

Operators, continued

% (modulus)

The percent sign is the modulus math operator:

%remainder = %num1 % %num2

The %remainder variable contains the whole number remainder of the division of %num1 by
%num2.

Modulus operations are evaluated before addition and subtraction operations in an expression.
The modulus operations are defined for whole numbers, or integers, not real numbers.

= (assign)

The equal sign is the assignment operator (equivalent to the SET command):

1 SET $target $source
2 $target = $source

Line 1 is equivalent to line 2; both set the variable $target to the value of $source.

= or == (equal to)

The equal sign is also the equal to relational operator:

IF $user = $sysop
DISPLAY (0, 0) “administrator online ^M”

This example displays a message if the string $user is equivalent to the string in $sysop. You
can also use == for equal to.

< (less than)

The less than sign is the less than relational operator:

IF %sessions < 2
DISPLAY (0,0) “new user online ^M”

This example displays a message if the integer numeric %sessions is less than 2.

> (greater than)

The greater than sign is the greater than relational operator:

IF SECONDS ($logon) > 3300
DISPLAY (0,0) \

“You have less than” | \
STR ((%session_time - 3300) / 60) \
| “minutes left ^M”

This example displays a message if the elapsed time since the time specified by $logon is greater
than 55 minutes.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

56

Operators, continued

<= (less than or equal to)

The less than and equal signs are used together as the less than or equal to relational operator. The
order of the two signs is not important (<= and =< will both work):

IF %sessions <= 2
DISPLAY (0,0) “new user online ^M”

This example displays a message if the integer numeric %sessions is less than or equal to two.

>= (greater than or equal to)

The greater than and equal signs are used together as the greater than or equal to relational opera-
tor. The order of the two signs is not important (>= and => will both work):

IF SECONDS ($logon) >= 3300
DISPLAY (0,0) “You have less than” | \

STR ((%session_time - 3300) / 60) \
| “minutes left ^M”

This example displays a message if the elapsed time since the time specified by $logon is greater
than or equal to 55 minutes.

<> (not equal to) or !=

The greater than and less than signs are used together as the Not Equal To relational operator. The
exclamation point and equal sign can also be used together (!=) as the Not Equal To operator:

CONNECT
WAIT QUIET “2”
IF SEARCH (“USERID”) <> -1

SEND “userid{tab}password{enter}”
ELSE

DISPLAY “USERID prompt not found ^M”
CANCEL

In this example, written for an IBM 3270 connection, DCS establishes a connection with the
host, waits for two seconds, and then searches the screen for the USERID prompt. If it is found,
DCS logs into the system. If it is not found, the message “USERID prompt not found” is dis-
played and script execution is stoped.

1 Introduction to the Script Language

57

Operators, continued

NOT

The NOT Boolean modifier converts a Boolean to its logical opposite:

RECORD READ 0
 WHILE NOT EOF ()
 BEGIN

DISPLAY @R0
RECORD READ 0

END

This example displays each record in Table 0 until reaching the end of the file.

AND

The AND Boolean operator is used in complex Boolean expressions. The expression evaluates to
TRUE if all associated operands are TRUE:

TABLE DEFINE 0 FIELDS CHAR 3 INT 4 INT 8
TABLE LOAD 0 FROM “SALES.DCM” AS TEXT
RECORD READ 0
IF @R0.1 = “Jan” AND @R0.2 > “1998”

SEND @R0
ELSE

DISPLAY “Old or incomplete file”
CANCEL

This example defines a table, and loads the SALES.DCM file into the table. DCS then verifies
that the first two fields in the first record match the expected format. If the fields match, the
record buffer is sent to the remote system. If they do not match, “Old or incomplete file” displays
and script execution stops.

AND relations are evaluated before OR relations; this precedence may be changed by using
parentheses.

OR

The OR Boolean operator is used in complex Boolean expressions. The expression evaluates to
TRUE if any of the associated operands are TRUE:

IF $password = “newuser” \
OR $password = “” AND \
$userid = “visitor”
DISPLAY (0,0) “new user online”

This example displays a message if $password is newuser or if $password is a null string
and $userid is visitor.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

58

Operators, continued

| (Concatenate)

The vertical bar is the concatenation string operator:

IF SECONDS ($logon) > 3300
DISPLAY (0,0) \
“You have less than “ | \
STR ((%session_time - 3300) / 60) \
| “minutes left”

In this example, concatenation operators are used to insert a dynamic value into the displayed
string. For example, if the integer numeric %session_time contains the value 3600, the STR
function returns the value 5, and displays the string “You have less than 5 minutes left”.

Operator Precedence

The following table lists the precedence for math and relational operators. All operators associate
from left to right.

Precedence Operators
Highest ()

 NOT - (unary minus)

 * / %

 + -

 > >= < <=

 = (equal to) == <> !=

 AND

 OR

Lowest = (assign)

1 Introduction to the Script Language

59

DCS Script Language variable management scheme automatically creates variables when they are assigned
an initial value and makes them available only to the routine in which they were created. This prevents the
script writer from having to explicitly create and dispose of variables. This scheme, however, imposes some
restrictions which make it necessary to consider the range over which a variable is defined. Scoping rules
define this range.

If script execution branches, a parent is defined as a routine on a level above a child routine. A child routine
is created in one of three ways:

 A child routine can be called with a PERFORM command. The routine containing the PER-
FORM command is the parent; the called routine is the child.

 A routine executed from the command list of a WHEN command is considered a child of the
routine containing the WAIT command it interrupted.

 A dialog definition is considered a child of the routine that created it. Any script or routine can
be a parent to one routine and a child of another.

Example

In this example:

*Main
If Connect ()

$Name = “*Yes”
Else

$Name = “*No”
Perform $Name
Cancel

*Yes
Display “Connection established”
Return

*No
Display “ No connection established”
Return

*Main is the parent routine. Both *Yes and *No are children of *Main.

Scoping Rules

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

60

The scope of a variable is the routine in which it was created and any child of that routine. Vari-
ables created in a child routine do not exist in its parent routine.

Example

PARENT.DCP

$date = Date ()
$time = “”
$city = “Chicago”
Perform “child1”
Perform “child2”
Display $name
Display $city
Display $street
Cancel

CHILD1.DCP

Display $date ;created in parent
$time = TIME () ;created in parent
$name = “Smith” ;not visible to parent
Return

CHILD2.DCP

Display $time ;created in parent
$city= “Dallas” ;created in parent
$street= “Clover Lane” ;not visible to parent
Return

The parent routine PARENT.DCP in the above example creates the variables $date, $time,
and $city which the child routines CHILD1.DCP and CHILD2.DCP can successfully access
and modify. However, since $name is created in CHILD1.DCP, it is known only in this script
and its children. It is not known in PARENT.DCP or CHILD2.DCP. Likewise, $street is
known only to CHILD2.DCP and its children. It is not known in PARENT.DCP or CHILD1.
DCP.

An execution error occurs when the DISPLAY $name and DISPLAY $street commands
are executed. An error message displays, indicating an undefined variable was referenced by the
parent routine.

Subroutines within the same script file which are called by a PERFORM command do not follow
these rules.

Also see: ARGUMENTS command
Parameter Passing & Subroutines section in this chapter

Scoping Rules, continued

1 Introduction to the Script Language

61

The scoping rules defined in the previous section allow variables created in a parent routine to be passed
down to any of its child routines, but do not allow a child routine to pass the value of a variable it created
back to its parent. They also specify that if a child routine modifies a variable created on the parent level, it
is modified on the parent level also; variables created in the parent routine have no protection from modifi-
cation from within a child routine. This is the default scope of variables.

To create modular or structured scripts, it may be desirable to extend the limitations imposed by the scop-
ing rules. DCS provides a parameter passing scheme that allows data from a parent routine to be mapped
into local variables in a child routine. This mapping allows the passage of data back and forth between par-
ent and child routines, while the creation of local variables protects variables created in the parent routine
from being unintentionally modified by the child routine.

These features allow the script writer to create groups of generalized utility routines that can be called from
script applications, promoting modular, structured script development.

To pass parameters, a parameter list must be specified by both the parent and child routines. A parameter
list can be defined for a child routine in either of two ways. The child can specify the desired parameter list
on the same line as the label indicating the start of the child routine, or in an ARGUMENTS command
included immediately following the label.

Example

Each of these command fragments:

*sub1 (%int, $string, !real, #bool)

*sub2
ARGUMENTS (%int, $string, !real, #bool)

defines a child routine, which specifies a parameter list containing the local variables %int,
$string, #bool, and !real.

Parameters can only be passed by a parent routine using a PERFORM command. The parent
specifies the parameters to pass by including a parameter list after the PERFORM command.

Example

These two examples:

PERFORM sub1 ($name, %age, 25.00)
;to a label in this script file

PERFORM “Child1*sub1” ($name, %age, 25.00)
;to a label in the Child1 file

illustrate how to pass the parameters $name, %age, and 25.00 to the routine labeled sub1
(either to a local subroutine or to another script file). The parent routine passes all variable param-
eters by reference. If the parameter is constant or an expression, it is passed by value.

When the parent passes a string, numeric, or Boolean variable to the child routine, the child rou-
tine can use the initial value of the variable and can modify the variable. The parent routine can

Parameter Passing & Subroutines

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

62

then use the modified value in the variable. The variable names used in the two parameter lists
need not be the same, but the variables must be of the same type.

When the parent passes a string, numeric, or Boolean expression (not simple variables) to the
child routine, the child routine can use or modify this value, but modifying it will not affect
expressions or variables in the parent routine.

Example

In this example:

PERFORM sub1 ($name, %number)

the variables are passed by reference; the child routine uses the variables’ initial values, and
can modify these variables, passing the new value back to the parent routine.

When passing parameters between two routines, there is customarily a one-to-one correspon-
dence between parameters in the parameter list of the parent and that of the child. Corresponding
parameters must be of the same type: string, numeric, or Boolean. DCS places the value of each
parameter in the parent’s parameter list into the corresponding variable in the child’s parameter
list.

Example

In this example:

PERFORM sub1 ($name, %age, 25.00)
.
.
.
*sub1 ($String, %Years, !Salary)

three parameters are passed from the parent to the child. The value stored in $name is
passed by reference to the variable $String. The value stored in %age is passed by refer-
ence to %Years. The value 25.00 is passed to !Salary.

Specifying a parameter list for a child routine creates local variables for the child routine. A lo-
cal variable in a child routine can modify a variable in a parent routine if the parent variable is
passed by reference to the child routine or if the variable name is the same in a parent and a child
routine. A parameter list allows you to make a well-defined interface between the parent and child
routines.

Additional local variables can be created for use by the child routine by specifying an ARGU-
MENTS command in addition to the parameter list. These variables are not parameters; values
cannot be passed to or from them. They are local variables to be used by the child routine that are
disposed of when control branches back to the parent routine. Since they are local variables, they
protect variables in the parent routine which bear the same name from modification.

Parameter Passing & Subroutines, continued

1 Introduction to the Script Language

63

Example

In this example:

$name = “Arnold Wilson”
%age = “34”
PERFORM sub1 ($name, %age)

*sub1 ($name, %age)
ARGUMENTS ($Date, %Bracket)

four local variables are created: $name, %age, $Date, and %Bracket in the routine
sub1 . The variables $name and %age are parameters and therefore receive initial values
from the calling routine, while the local variables $Date and %Bracket are assigned null
initial values.

Parameter Passing & Subroutines, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

64

One of the most important features of the DCS Script Language is the automation of communications
sessions. Tables facilitate the automation process by providing a structured mechanism through which
incoming and outgoing data can be processed.

Tables are temporary structures used to implement random access file operations. Tables exist in memory,
and are therefore destroyed when script execution terminates. You can, however, save the contents of a table
to a file at any time for permanent storage. Up to 16 tables can be created, each identified by a number
from 0 through 15.

A table consists of one or more records in which the desired data is maintained. Tables contain either text
records or structured records, but not a mixture of both. When a table is defined, you must specify whether
the table will have text records or structured records.

Structured Tables

A structured table is most often used to maintain data of a uniform format which consists of sev-
eral organized components. These components may be of different data types (character, integer,
etc.) and can be accessed as a group or individually. Each group of components is referred to as a
record; each component is referred to as a field within the record. To illustrate, consider a phone
book as a structured table:

 Smith, Arnold 1232 Main Street 555-2233

 Thomas, Cindy 4435 South Lake Street 555-7899

 Zeller, Henry 7708 Maple Avenue 555-6521

Each row comprises one record. Each record consists of three fields (name, address, and phone
number).

A structured table consists of fixed-length records made up of a specified number of fields. A
structured table is defined with the following command:

 TABLE DEFINE Table FIELDS f1 ... fi FILE

The Table argument specifies the table identifier (from 0 to 15). The FIELDS clause indicates a
structured table. Text tables do not have fields. The f1 through fi arguments specify the desired
fields and are defined according to type and length. Each field argument includes:

 A type keyword; either CHAR, INT, or REAL (specifying character, integer number, or
real number respectively), and

 An integer from 1 to 254 that specifyies the length of each field.

The data in a table is stored as a string, The logical data type is retained to facilitate the import
and export of data. The TABLE DEFINE command determines the number of fields in a record.
The optional FILE keyword is used for structured tables only. By default, a structured table is
maintained in global memory in its entirety. The FILE keyword stores the specified table on disk
in a temporary file and swaps records in and out of global memory as needed. Use this option
when working with tables larger than 64K to avoid running out of memory.

Tables, Records and Data Manipulation

1 Introduction to the Script Language

65

Example

A table used to hold the Phone Book data shown on the previous page could be defined in
the following way:

TABLE DEFINE 1 FIELDS CHAR 20 CHAR 50 CHAR 8

This command defines Table 1 as a structured table with three fields. The first field holds
the person’s name. If any records contain names longer than 20 characters, all letters past
the 20th will be truncated. The second field holds the person’s address. Again, all characters
past the 50th character are truncated. The third field holds the phone number. This field was
designated as eight characters long to hold seven numbers and a hyphen.

A table to hold the Phone Book entry data could be defined in a number of different ways. The
name could be split into two separate fields for first and last name. The phone number could drop
the hyphen and be stored in two separate integer fields. When deciding how to define the fields of
a structured table, carefully consider how the data will be used. The purpose of defining a table is
to facilitate data manipulation.

Two types of operations can be performed on a structured table: table operations and record
operations.

Table Operations

Table operations treat the table as a unified entity. They to operate on the table as a whole, but do
not access individual records. The following table operations can be used on structured tables:

Command Description
TABLE CLEAR Clears all data from the table.

TABLE CLOSE Removes the specified table from memory.

TABLE COPY Copies the contents of one table to another.

TABLE DEFINE Creates a table.

TABLE LOAD Imports a set of data records from a file into a table.

TABLE SAVE Exports the entire contents of a table to a file.

TABLE SORT Performs a table sort based on specified criteria.

Also see: Chapter 3 Commands

Tables, Records and Data Manipulation, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

66

Record Operations

Record operations treat each record as a separate entity, and allow you to operate upon each
record individually.

Data contained in a table cannot be accessed directly, but must be accessed one record at a time
through the record buffer. A record buffer exists for each table defined, and is an exact template
of the records in the table, reflecting the fields created. DCS accesses the record buffer by using a
record buffer variable. A structured record buffer variable observes the following syntax:

 @RTable.Field;which table = [0...15], which field = [1...n]

The Table argument specifies the number of the table. The optional Fieldargument is preceded by
a period and specifies a field within the record buffer variable, allowing access to a single field. For
example:

@R3 defines a record buffer variable for the entire record buffer associated with table three;

@R3.5 defines a record buffer variable for the fifth field of the record buffer associated with Table
3.

DCS allows you to perform the following record operations:

Record Commands Action
RECORD READ Reads one record of data from the specified table.

RECORD WRITE Writes one record of data to the specified table.

RECORD FORMAT and RECORD SCAN commands are also available, but they are advanced
shortcuts built upon the basic reading and writing operations. For details, see Chapter 3 Com-
mands.

The RECORD READ operation reads one record from the specified table into the corresponding
record buffer. The record at which to begin reading can be specified with the AT clause, allow-
ing random access. If the AT clause is not included, DCS begins reading at the first record in the
table. The first record in a table is number 0 (zero). All successive record reads are then performed
sequentially. The data read can then be accessed through the record buffer variable.

Example 1

The following commands:

Record Read 6 AT 3 ;read at record 3
While Not EOF () ;while not at end of file
Begin

Display @R6 ;display record contents
Record Read 6 ;read next record

End

establish a loop which displays the records in Table 6, beginning with record four (specified
with the number three since the first record is numbered zero) and continuing through to the
end of the file, in your terminal window (assuming table six has been defined).

Tables, Records and Data Manipulation, continued

1 Introduction to the Script Language

67

The RECORD WRITE operation writes one record from the record buffer to the corresponding
table. The record at which to begin writing can be specified with the AT clause to allow random
access.

If the AT clause is not included, DCS begins writing at the last record in the table. All successive
record writes are then performed sequentially. The data is passed to the table through the corre-
sponding record buffer variable.

Example

The following commands:

While Not EOF ()
Begin

Record Read 1
If @R1.3 = “”

@R1.3 = Time (),
Record Write 1

End

perform both reads and writes to table one. Each record is read from the table and exam-
ined. If the third field of the record is empty, the current time is written to that field. This is
sequentially performed on all records until the end of the file is reached.

RECORD WRITE operations write data from the record buffer to the table structure, not to your
disk. If you want to permanently save data written to a table, you must execute a TABLE SAVE
command to save the contents of the table to a file.

Text Tables

A text table is most often used to maintain unstructured data which consists of sequential lines of
text. Unlike structured tables, text tables do not contain fields of multiple data types. To illustrate,
consider the following unformatted text as a text table:

His name is Arnold Smith.
He lives at 1232 Main Street.
His phone number is 555-2233.

Each row comprises one record; there are no fields. A text table must be used to store data of an
unknown or variable length.

A text table consists of variable-length records up to 254 bytes long, where each character com-
prises one byte. Records in a text table are delimited by carriage return and line feed characters. A
text table is defined with the following syntax:

TABLE DEFINE Table TEXT FileName

The Table argument specifies the table identifier (from 0 to 15).

The TEXT keyword indicates to DCS that a text table is being defined. Text tables do not have
fields. Unlike structured tables, text tables are always maintained on disk. The FileName argu-

Tables, Records and Data Manipulation, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

68

ment specifies the name of the file upon which table operations will be performed. If the specified
file does not exist, the TABLE DEFINE command creates the file.

Example

A table used to hold the unformatted text above could be defined in the following way:

TABLE DEFINE 1 TEXT “MYDATA.TXT”

This command defines table one as a text table. All table operations will be performed upon
the file MYDATA.TXT.

Since a text table consists of lines of text delimited by carriage return and line feed characters, the
table definition does not allow the type of flexibility associated with a structured table.

Table Operations

Table operations treat the table as a unified entity. The following table operations can be per-
formed on text tables:

Command Action
TABLE CLEAR Clears all data from the table

TABLE CLOSE Saves the table’s contents to disk and removes the specified table

from memory

TABLE COPY Copies the contents of one table to another

TABLE DEFINE Creates a table

Record Operations

Record operations operate upon individual records. Record operations are performed on text
tables using the record buffer variable. A text record buffer variable observes the following syntax:

@RTable

The Table argument specifies the number of the table. Since there are no field designations al-
lowed in a text table, the Field argument is not included. For example, @R3 defines a record
buffer variable for the record buffer associated with table three.

DCS allows you to perform the following record operations:

Command Action
RECORD READ Reads one record of data from the specified table

RECORD WRITE Writes one record of data to the specified table

The RECORD READ command copies one record, or depending on the position of the read
pointer, the rest of a record into the corresponding record buffer. The AT clause specifies the byte
position of the read pointer in a record in the table and allows the command to start copying
from any position in the table. Without the AT clause, the characters are copied from the end of
the previous record in the table to the end of the record where the pointer presently is, but with

Tables, Records and Data Manipulation, continued

1 Introduction to the Script Language

69

the AT clause the characters are copied from the position in a record indicated by the AT clause to
the end of the record.

The position in a text table is specified as a byte number at which to begin reading in a table,
not a record number as in structured tables. The first position in a table is considered position
0 (zero). DCS includes the carriage return and line feed characters that end a record when it
figures the number of bytes in a table or a record. For example, if a text table were to consist of
one record and if you were to assign ten bytes to that record, DCS considers the table to have 12
characters or byte positions in the table (from 0 to 11).

This text record:

His name is Arnold Wilson.

is 28 bytes long (26 characters and spaces plus one carriage return and one line feed). If this
is the first record, to begin reading at the “A” in Arnold, specify RECORD READ 0 AT
12.

Since the records in a text table can vary in length, you can also specify the number of bytes to
read with the LENGTH clause. If a LENGTH clause is not included, DCS reads until it encounters
a carriage return character and then a line feed character.

If the record below:

His name is Arnold Wilson.

is the first record in Table 5 (five), to read only the name from this record you would specify:

RECORD READ 5 AT 12 LENGTH 13

DCS does not prevent you from reading multiple text lines if the length you specify encompasses
carriage returns and line feeds. Since the maximum length of a record buffer variable is 254 char-
acters, you may not specify a length larger than 254. When calculating the read length, remember
that the carriage returns and line feeds that appear at the end of a line count as one byte each. The
data read can then be accessed through the corresponding record buffer variable.

The following example:

RECORD READ 6 AT 0 ;read first record
WHILE NOT EOF () ;while not at end of file
BEGIN

DISPLAY @R6 ;display record contents
RECORD READ 6 ;read next record

END

establishes a loop which displays all the records in Table 6 in your terminal window (assum-
ing Table 6 has been defined).

After a record read is performed, the read pointer is positioned at the character following the last
character read. If the LENGTH clause is not included, this position is, by default, at the beginning
of the next line of text.

Tables, Records and Data Manipulation, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

70

The RECORD WRITE operation writes one record from the record buffer to the specified table.
The position at which to begin writing can be specified with the AT clause to allow random access.
This position is specified as the byte (not line number) at which to begin writing, where the first
byte is considered byte 0 (zero). Carriage returns and line feeds count as one byte each. If the AT
clause is not included, DCS begins writing at the end of the table.

Since the records in a text table can vary in length, you can also specify the number of bytes for
DCS to write with the LENGTH clause. If not included, DCS places a carriage return character
and a line feed character at the end of the text written. If you specify a write position that is not at
the end of the table, DCS writes over all text that is currently in the specified position (it does not
“insert”).

DCS does not prevent you from writing multiple text lines if the length you specify encompasses
carriage returns and line feeds. Since the maximum length of a record buffer variable is 254 char-
acters, you cannot specify a length larger than 254. When calculating the write length, remember
that the carriage returns and line feeds that appear at the end of a line count as one byte each.

Example

The following example:

While True
Begin

Collect @R6
Record Write 6
Increment %Count

End

establishes a loop which continually collects all lines of data that come into your terminal
window and writes them, line by line, to Table 6 (assuming Table 6 has been defined).

After a record write is performed, the write pointer is positioned at the character following the last
character written. If the LENGTH clause is not included, this position is, by default, at the begin-
ning of the next line of text.

Tables are the mechanism through which DCS accesses file objects. This section has provided
you with an overview of their purpose and use. For a more detailed explanation of the commands
used to create and manipulate data stored in a table, see the TABLE and RECORD commands in
Chapter 3 Commands.

Tables, Records and Data Manipulation, continued

1 Introduction to the Script Language

71

DCS has four default menu sets (MAIN, MEMO, SCRIPT, and SESSION) which are displayed when a DCS
document (window) of the corresponding type is active. Furthermore, the four menus are associated at the
DCS application level, not at the session level. This means, for example, the SESSION menu set will be
used when any session window is active. The MAIN menu set is displayed if there are no open DCS child
windows.

These menus may be modified (customized) through the DCS MENU EDITOR feature or through the
script MENU commands. Changes made through the MENU EDITOR are permanent and become the
default definition of that menu for all windows of that type. The MENU EDITOR does allow the user to
reset the menu to DCS defaults. Changes made through a script are temporary and menus revert back to
their default definition when the script exits or executes a MENU CANCEL command.

DCS is a Windows MDI application (see programming considerations below) allowing multiple sessions
and scripts to be executing at the same time. Because the menus are considered application-level resources
and most scripts operate at the session level, the following rules are applied when the MENU commands
are used:

1. The first script to execute a MENU command controls the DCS MENU definition until the script
exits or performs a MENU CANCEL command. The assumption is that the script wants to have
total control of the what the user has access to during the duration of the script. If the script
executes another MENU command without canceling the previous MENU command, DCS issues
a MENU CANCEL command to automatically terminate the previous menu definition.

2. The defined MENU becomes the one and only menu regardless of document type until the script
exits or performs a MENU CANCEL command.

3. Any script that executes a MENU command while there is a script defined menu in place causes
a run-time error to be returned and the command will not be executed. It is important that the
script writer check for this error condition before proceeding with the script execution. See the
MENU command for details.

4. All script menu commands, except the MENU command, are valid only after a MENU command
has been performed otherwise they will cause a run-time error to be returned and the command
will not be executed. It is important that the scriptwriter check for this error condition before
proceeding with the script execution. See the MENU command for details.

5. All script menu functions are valid with any menu. This is because they do not modify the menu
but only return the status of the menu item.

There will be times that the scriptwriter will want to use the default menu definitions or combination of
definitions as the starting definition. DCS allows for this through the use of SYSTEM menu numbers.
These SYSTEM numbers relate the DCS default definitions for easy identification for user selection. If the
script writer uses one of the SYSTEM numbers it is related to the default DCS definitions and not to any
modifications made through the MENU EDITOR feature.

Menus

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

72

The following SYSTEM numbers are defined:

System Menu Active window type*

SYSTEM 1 File MAIN

SYSTEM 2 File SESSION, SCRIPT, MEMO

SYSTEM 3 Edit MEMO, SCRIPT

SYSTEM 4 Edit SESSION

SYSTEM 5 Script MAIN, MEMO, SCRIPT, SESSION

SYSTEM 6 View MAIN, MEMO, SCRIPT, SESSION

SYSTEM 7 Tools MAIN, SESSION

SYSTEM 8 Tools MEMO, SCRIPT

SYSTEM 9 Help MAIN, MEMO, SCRIPT, SESSION

SYSTEM 10 Window MEMO, SCRIPT, SESSION

SYSTEM 11 Session SESSION

SYSTEM 12 Insert MEMO

*The visible menus vary depending on which type of window is active (in focus). MAIN refers to the DCS
application window. SESSION refers to session windows, MEMO to memo windows, and SCRIPT to a
script editor window.

Example 1

In this example:

MENU
POPUP “File” SYSTEM 2
POPUP “Edit” SYSTEM 3
POPUP “Session” SYSTEM 11
POPUP “Windows” SYSTEM 10
POPUP “Help” SYSTEM 9

MENU END
PERFORM setup

MENU CANCEL
PERFORM receive_files

the menu bar definition is made up of the File menu of the MEMO/SCRIPT/SESSION
group, the Edit menu of the MEMO/SCRIPT group, the “Session menu of the SESSION
group, and the Help menu of the MAIN/MEMO/SCRIPT/SESSION groups. The MENU
CANCEL command restores these options before the receive_files routine is per-
formed.

Menus, continued

1 Introduction to the Script Language

73

Example 2

This example:

MENU
POPUP “File” SYSTEM 2
POPUP “Edit” SYSTEM 3
POPUP “Session” SYSTEM 11

SEPARATOR
ITEM “NewItem” PERFORM new_item_routine

POPUP “Windows” SYSTEM 10
POPUP “MyMenu”

ITEM “MyItem” PERFORM my_routine
POPUP “Help” SYSTEM 9

MENU END
PERFORM setup

MENU CANCEL
PERFORM receive_files

is the same as Example 1 with a new item added to the Session menu and a new popup
menu and item inserted between the Windows and Help menus.

Menus, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

74

DCS Windows

An active window is the window which has focus. It appears with a highlighted (as opposed to
dimmed) title bar and window border. The active window almost always lays on top of any other
open windows.

 An active session is understood to be a session currently in contact with a remote system.

 An active session window is a session which is both in contact with a remote host and
also in focus.

If a window is hidden, it is not visible. However, a hidden session window can still contain an
active session, and commands may be sent to the active session.

DCS Window Handles

Window Handles specify a particular window as the target of a function or command. The target
window is determined by using the:

1) WinHandle argument of the function or command

2) Script’s DefaultSessionHandle

3) Active window

In many functions and commands, you have the option of specifying a particular window (ses-
sion window, DCS child window, edit window, etc.) as the target of a function or command.
To specify a particular window, its window handle must be included in the command syntax.
A window handle is an integer, and in most cases is specified in a function or command by the
WinHandle argument.

Each script has a DEFAULTSESSIONHANDLE variable. This variable is set to the window
handle of the active window when the script is executed. If there is no DCS child window active
when the script is executed the DEFAULTSESSIONHANDLE variable is NOT set. The SET
DEFAULTSESSIONHANDLE command can be used to change/set this variable for the script.
When set all functions or commands effect the specified window unless a WinHandle argument is
used with the command or function. The DEFAULTSESSIONHANDLE function can be used to
determine the current variable setting.

If you do not know the window handle of a particular window, you can retrieve the window
handle using the HWNDLIST or WINDOWHND functions, or the CONNECT command.

Example

In this example:

%hnd = WINDOWHND (“Session1”)
WINDOW HIDE %hnd

the WINDOWHND function is used to retrieve the window handle for the window titled
“Session1”. The handle is stored in the variable %hnd and used with the WINDOW
HIDE command to hide the “Session1” window.

DCS Windows & Window Handles

1 Introduction to the Script Language

75

Programming Considerations

DCS supports the Windows MDI interface. This allows an arbitrary number of emulations, con-
nectors, and editing windows to run concurrently. An arbitrary number of instances and sessions
is also possible, limited only by the user’s machine and system capabilities. Depending upon the
user’s needs, the environment could be:

 One instance of DCS running one session.

 One instance of DCS running several sessions concurrently.

 An arbitrary number of instances of DCS, each running a single session.

 An arbitrary number of instances of DCS, each running several sessions concurrently.

Before writing scripts which take advantage of the Windows MDI interface, you should under-
stand how DCS scripts operate in this environment.

When a script is executed, its functions and commands affect the session window active at the
time the script is executed by default (sets the DEFAULTSESSIONHANDLE). For example, if
Window “A” is active when the script is executed, any command or function which may specify
a particular window will always affect Window “A” (unless the command or function specifies a
different window).

If no session window is active when the script is executed and the script does not set the DE-
FAULTSESSIONHANDLE, the script has no default window. Instead, each command and
function affects, by default, whichever window is active at the time the command or function is
executed (unless the command or function specifies a different window).

More than one script may be active at the same time, and in this case each script may have a dif-
ferent default window or the same default window. A script may set, or reset, its default window
with the SET DEFAULTSESSIONHANDLE command. The DEFAULTSESSIONHANDLE func-
tion returns the current default window.

Scripts may execute other scripts, and assign a default window to the new script, with the SPAWN
command.

DCS Windows & Window Handles, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

76

Two types of commands are available for detecting events:

 WAIT commands

WAIT commands pause script execution until a specified event becomes TRUE. This is known
as a wait state.

 WHEN commands

 WHEN commands branch script execution to an indicated command block when a speci-
fied condition become TRUE. WHEN commands executed prior to the current wait state will
interrupt the wait state if their conditions are met. This capability allows a script to wait for
multiple events.

Both WAIT and WHEN commands are followed by an event clause and a command list. DCS executes the
commands in the command list when conditions in the event clause are met.

WAIT commands are activated when the event clause becomes TRUE. WHEN Commands are only acti-
vated during a wait state—if the event clause becomes TRUE before or during the current wait state.

To terminate the current wait state, include a RESUME command in the WHEN command list. This pre-
vents the interrupted WAIT from regaining control when the command list is executed.

Example

Imagine you are connected to a system expecting a password to be sent before access is approved.
When the password is sent, the system sends one of three responses:

Password Response
password ok

password invalid

old password, please update

To accommodate this system, you could use the following script:

WHEN STRING 0 “password ok” PERFORM get_info, RESUME
WHEN STRING 1 “password invalid” CANCEL
WHEN STRING 2 “old password” PERFORM up_passwd, RESUME
WHEN TIMER “30” PERFORM time_out, RESUME
WAIT RESUME
CANCEL

Four WHEN criteria are first established, and then a WAIT RESUME command executes. There
are many types of WAIT commands, but the WAIT RESUME could be considered a “generic”
WAIT. It instructs DCS to wait until it receives the instruction to resume execution. No other
script execution takes place during the WAIT. If the event clause of any WHEN command be-
comes true while DCS is waiting, the WHEN is activated, and the commands in the command list
are executed.

Event Handling - WAIT and WHEN Commands

1 Introduction to the Script Language

77

In the example on the previous page, DCS waits 30 seconds for a response from the remote sys-
tem. If “password ok” is received, execution branches to the routine labeled get_info. When
that routine is finished, control returns to the WAIT statement. If “password invalid” is received,
execution terminates. If “old password” is received, execution branches to the routine labeled
update_password. If none of these three responses is received within 30 seconds, execution
branches to the routine labeled time_out.

Event Handling - WAIT and WHEN Commands, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

78

Dynamic Data Exchange (DDE) allows the exchange of information between two independent Windows
applications. DCS supports DDE with Script Language commands. For a complete listing of the sup-
ported DDE commands, see Chapter 3 Commands.

DDE Concepts

There are two participants in any DDE conversation: a client and a server. The client is the appli-
cation that initiates a conversation and makes requests. The server is the application that answers
the client and fills its requests. Both the client application and the server application must be run-
ning on your computer at the same time.

There are three stages in a DDE conversation:

 Initiation

The client requests a conversation with the server by sending a Windows initiate mes-
sage. The server responds by informing the client whether or not the requested conversa-
tion could be established.

 Transaction

The server responds to requests from the client. The client can send four types of re-
quests:

Message Type Action
Request message Requests a specified data item from the server

Advise message Requests continuous updates from the server on a specified

data item

Poke message Requests that the server receive the specified data item

Execute message Requests that the server execute the specified commands

 Termination

At any time, either the client or the server can end the conversation by sending a Win-
dows terminate message. The other application then answers with a terminate message.

To illustrate the advantages of DDE, consider the following example:

Imagine that you use DCS to gather weekly sales data from a remote computer system. You read
the data into a table, save it in a file, and get a printout of the data. You then run a spreadsheet
application using the data to update the appropriate cells on the spreadsheet. When this is com-
pleted, you run a graphics package to chart the data. To accomplish this you have taken the time
to sequentially run three applications, print out the data, and enter data into two applications.

This procedure could be greatly simplified using DDE. You first run both the spreadsheet and
graphics applications (memory permitting). You then gather the data as usual, and store it in a
table. Since it will be sent directly to the applications that need it, there is no need to save it to a
file or print it out.

Dynamic Data Exchange - DDE

1 Introduction to the Script Language

79

Dynamic Data Exchange - DDE, continued

You then execute a DDE script. This script initiates a conversation with the spreadsheet, sending
the required data to the appropriate cells. It then terminates this conversation and initiates a con-
versation with the graphics package, sending it the required data. It then terminates this conversa-
tion and cancels script execution.

By running a single script, you have automatically updated each application with just the data
it needed, without ever exiting DCS. The script may be modified to continuously send updated
data to each application as it is received from the remote system. DCS can also send commands to
the other applications instructing them to draw a chart or print a spreadsheet.

DDE is a quick and easy way for multiple applications to share data. DDE also allows the ex-
change of control between applications. DCS can only conduct a DDE conversation with another
Windows application that supports DDE.

DDE Implementation

In DCS, all DDE functions are performed using script commands. If DCS is to be the client, a
client script must be written containing all the DDE requests DCS will make. If DCS is to be the
server, a server script must be written which prepares DCS to handle incoming requests. To con-
duct a DDE conversation, both applications in the conversation need to agree upon the following
elements:

 Server Name

A DDE conversation begins when the client establishes a conversation with a server. The
client must, therefore, know the name to which the server will respond. If another Win-
dows application is the client, DCS responds to all initiate requests using DCSERIES as
the server name. If DCS is the client, you must establish, from an application’s docu-
mentation, the server name to which it will respond. Most applications use some form
of their application name as their server name. For example, Microsoft Excel responds to
the server name EXCEL.

 Topic

A DDE conversation must also have a topic. The topic describes something in the server
application that the client wants to access. If another Windows application is the client,
you must specify one of the three following DCS topics: the name of your DCS server
script, a null topic, or SYSTEM.

If a server script is specified as the topic (the file extension need not be included), the
establishment of the conversation depends on current DCS state. If no script is running,
the specified server script is executed and the conversation begins. If another script is
running and execution is paused at a WAIT RESUME command, the current script is
closed, and the specified server script is executed. If another script is running and execu-
tion is not at a WAIT RESUME command, the initiation fails.

If the SYSTEM topic is specified, no script need be running for DCS to answer the
initiation. However, if no script is running, DCS will be unable to process any client

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

80

Dynamic Data Exchange - DDE, continued

requests. For this reason, the SYSTEM topic should only be used to test for the existence
of DCS.

If DCS is the client, you must establish the topic names required by the other applica-
tion. For example, Microsoft Excel recognizes the name of any open document (with the
extension), or the SYSTEM topic.

 Item Name

Each DDE request must reference an item. The main purpose of this item name is
merely to match a client request to the proper server response. The server dictates the
format of an item name, but both client request and server response must reference the
same item name. If another Windows application is the client, DCS responds to any
string item name that is established in a DCS server command. If DCS is the client,
you must establish the type of item names the other application requires. For example,
Microsoft Excel can use a row and column reference as an item.

Multiple DDE Channels

DCS can process up to 16 DDE conversations at the same time. The conversations can involve
any number of applications (memory permitting). DCS can be client or server to any of these
applications. If multiple DDE conversations are taking place, DDE requests must be directed
not only to the proper application, but also through the proper DDE channel. All applications
that allow multiple DDE channels have a mechanism through which the channel number is
obtained during the initiate process. In DCS, a ChannelVar argument is included in the syntax
of the ACCESS and WHEN INITIATE commands. This variable receives a channel number when
the DDE conversation is established. If multiple DDE conversations are taking place, all DDE
requests should reference this channel number to insure that they are directed to the desired DDE
conversation.

Single/Multiple Data Items

When acting as a DDE client, DCS can send or receive data in either of two ways: by process-
ing a single data item, or by processing an entire table containing multiple data items. DCS can
poke data to the server using the POKE command to send a single data item, or using the TABLE
SEND command to send the entire contents of the specified table. DCS can request data from
the server using the REQUEST command to request a single data item, or using the TABLE RE-
QUEST command to request multiple items to be stored in a table.

1 Introduction to the Script Language

81

Syntax

The syntax of the DDE commands supported by DCS is summarized below.

DDE Message DCS as Client DCS as Server Response

ADVISE WHEN ADVISE TABLE REPLY

EXECUTE INSTRUCT WHEN EXECUTE

INITIATE ACCESS WHEN INITIATE

POKE TABLE SEND WHEN POKE

REQUEST TABLE REQUEST WHEN REQUEST TABLE REPLY

TERMINATE ACCESS CANCEL WHEN TERMINATE

The commands in the DCS as Client column send the DDE message to the server application.
The commands in the DCS as Server column prepare DCS to receive the DDE message from a
client application. The Response column indicates how DCS replies to the client message.

Example

In this example:

ACCESS ‘Excel’ ‘System’ %ch_num
IF ERROR () DISPLAY ‘No access’, CANCEL
INSTRUCT ‘[OPEN(“C:\\EXCEL\\SURVEY.XLS”)]’

a DDE conversation is established with Microsoft Excel, using the SYSTEM topic. The
channel number associated with this DDE conversation is stored in the variable %ch_num.
If the conversation cannot be established, an error message is displayed in the terminal win-
dow, and execution terminates.

If it is established, the INSTRUCT command directs Excel to open the C:\EXCEL\
SURVEY.XLS worksheet. Notice that the INSTRUCT command syntax is in the format
expected by Excel.

Dynamic Data Exchange - DDE, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

82

Task errors occur when DCS cannot carry out the tasks as they are presented. There are four types of task
errors:

 Fatal Errors

When DCS encounters a fatal error, the Fatal Task Error dialog is displayed along with a brief
explanation of the error. A fatal error indicates that DCS is not able to proceed in execution
from the command in which the error was encountered. For example, executing a PERFORM
command with a target script that does not exist generates a fatal error.

When a fatal error is encountered, DCS allows execution termination only. To terminate
execution, click the OK button.

 Critical Errors

When DCS encounters a critical error, the Task Error dialog is displayed along with a brief
explanation of the error. A critical error indicates a serious error which will likely impair the
logic of the rest of the script. DCS is able to proceed in execution from the command in which
the error was encountered, if instructed to do so. For example, running out of global memory
would generate a critical error.

When a critical error is encountered, DCS allows either continuation or termination of execu-
tion. To continue execution, click the OK button. To terminate execution, click the Cancel
button.

 Warning Errors

When DCS encounters a warning error, a different type of Task Error dialog is displayed
along with a brief explanation of the error. A warning error indicates a less serious program-
ming error. DCS is able to proceed with execution of the command in which the error was
encountered, if instructed to do so. For example, violating scoping rules or attempting to read
from an undefined table would generate warning errors.

When a warning error is encountered, DCS will allow either continuation or termination
of execution. To continue execution, click the OK button. To terminate execution, click the
Cancel button.

 Run-Time Errors

When DCS encounters a run-time error, no dialog is displayed. Run-time errors are not
typically programming errors. They are meant to be used by a script to set status flags. For
example, trying to position the read pointer to a position past the end of a table generates a
run-time error. DCS continues execution past run-time errors, without informing you of their
occurrence. The ERROR function can be used to test for the occurrence of a run-time error.

Task Errors

1 Introduction to the Script Language

83

Example

In this example:

TABLE DEFINE 0 CHAR 10 CHAR 15 INT 8 FILE
IF ERROR () DISPLAY ‘Could not create table^M’, CANCEL
TABLE LOAD 0 ‘DATA.DCM’ AS TEXT
IF ERROR () DISPLAY ‘Could not load data^M’, CANCEL
RECORD READ 0

since each successive command is dependent on the successful execution of the previous
command, the IF commands are used to test for the occurrence of run time errors.

Note: Using the TASKERROR command with levels and codes, displays slightly different dialogs
than those described above.

Task Errors, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

84

Converting Scripts from Previous Versions of DCS

Scripts written with DCS 7.0 or DCS 8.0 (all versions) are compatible with DCS 9. Scripts written with
a version of the DCS Script Language prior to DCS 7.0 (with such FutureSoft products as DCS/Elite or
DCS Asynchronous) must be reviewed for compatibility with the DCS Connectivity Series (DCS). In
general, the majority of the scripting language syntax has not changed. However, there are key areas that
have changed:

 Addressing Multiple Sessions

A script can address and affect multiple sessions. To distinguish between and among sessions,
many commands and functions may use a Window Handle argument. Be sure to read the
DCS Windows & Window Handles section before writing scripts which affect multiple con-
current sessions.

 Multiple, Simultaneous Scripts

You can run multiple scripts simultaneously within the DCS Connectivity Series (DCS).
Event timing must be examined carefully, especially if multiple scripts are executing while
multiple session windows are open. Be sure to read the Programming Considerations section
before writing scripts designed to operate simultaneously.

 Configuring Sessions

Previous versions of the scripting language used the SETTINGS function and the SET com-
mands to configure a session. These commands are still available for backward compatibility,
but new features and functionality in all emulations, connectors, and file transfers are available
only with the new configuration commands and configuration functions.

Specifying an emulation, connector, or file transfer is still done via the SET EMULATION, SET
CONNECTION, and SET BINARYTRANSFERS commands, but some of the keywords may
have changed. Once these have been set, you may specify configuration options appropriate
to the emulation, connector, or file transfer protocol. In most cases, any feature which may be
selected in the Session Properties dialog may also be configured via script.

For emulation configuration options, see the EMULCONFIG command and GETEMULCON-
FIG function.

For connector configuration options, see the CONNCONFIG command and GETCONNCON-
FIG function.

For file transfer configuration options, see the XFERCONFIG command and GETXFERCON-
FIG function.

For general session configuration option, see the GENERALCONFIG command and GET-
GENERALCONFIG function.

For session display options, see the DISPLAYCONFIG command and the GETDISPLAYCON-
FIG function.

1 Introduction to the Script Language

85

 Application, Menu and Toolbar Configuration

Application-level configuration options may be configured using the APPCONFIG command
and GETAPPCONFIG function.

In addition, menus and toolbars can be configured via script. See Menus in this chapter,
Menu Functions in Chapter 2 and Menu and Toolbar Commands in Chapter 3 for details.

Also see: Appendix B Additions and Deletions

Converting Scripts from Previous Versions of DCS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

86

2
Functions

DCS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

88

Note: Commands or functions flagged with an asterisk do not apply to the IBM TN3270 emu-
lation.

—A—
ACTIVE Returns the handle number of the active window

ATTRIBUTES Returns the file attributes of the specified file

—B—
BAND Returns the bitwise AND value of its arguments

BNOT Returns the bitwise complement of its argument

BOOL Converts an integer numeric to its boolean value

BOR Returns the bitwise OR of its arguments

BXOR Returns the bitwise exclusive OR of its arguments

BUFFER Returns the text from a screen buffer field.

—C—
CHR Converts a numeric to its ANSI character value

CONNECT Returns the connection state with the remote system

CONNECTMESSAGE* Returns the last dial status of a modem sent to the computer

CONNECTRESULT* Returns the last dial status of a modem sent to DCS

CURSOR Returns the current cursor position

—D—
DATE Returns a current or derived date as a string

(DDE) ADVISE Indicates that a DDE ADVISE or UNADVISE message acti-
vated a WHEN ADVISE command

DECRYPT Returns the decrypted value of the specified encrypted string

DEFAULTSESSIONHANDLE Returns the handle of the script’s default session window

(DIALOG) CHECKBOX Determines if the specified check box is checked

(DIALOG) EDITTEXT Returns the contents of the specified edit text control

(DIALOG) LISTBOX Indicates which item in the specified list box is selected

(DIALOG) MESSAGEBOX Displays a message box

(DIALOG) RADIOGROUP Indicates which radio button in a radio group is selected

DIRECTORY Returns the current working directory for the specified data
file type

DISKSPACE Returns the number of bytes free on the specified drive

Functions in Alphabetical Order

2 Functions

89

—E—
ENCRYPT Returns an encrypted equivalent of the specified string

EOF Indicates if the end of the table has been reached

ERROR Indicates whether an error occurred during script execution

EXISTS Determines whether the specified file exists

EXFLDATTR Returns the extended field attributes of the specified field

—F—
FILESIZE Returns the number of bytes in the specified file

FILTER Replaces specific characters in the specified string

FLDATTR Returns the field attributes of the specified string

FLDATTREXPOS Returns extended field attributes of the field at the specified
row and column

FLDLEN Returns the length of the specified field

FLDNUM Returns the field number of the specified field

FLDPOS Returns the absolute position of the beginning of the speci-
fied field

FLDTEXT Returns text from a screen field.

—G—
GETAPPCONFIG Returns a string identifying general application options

GETCONNCONFIG Returns a string identifying current connector setting

GETDISPLAYCONFIG Returns the display settings of a session window

GETEMULCONFIG Returns a string identifying current emulation setting

GETGENERALCONFIG Returns a string identifying general session options

GETPROFILEDATA Returns a string associated with an INI entry

GETXFERCONFIG Returns a string identifying current file transfer setting

—H—
HWNDLIST Returns the handle numbers of all child windows

—I—
ICONIC Determines whether a window is minimized

INT Converts a numeric to an integer numeric

—L—
LENGTH Returns the number of characters in the specified string

Functions in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

90

—M—
(MENU) CHECKED Returns the state of a checked or unchecked menu item

(MENU) ENABLED Returns the state of a disabled or enabled menu item

—N—
NETID* Returns the network ID set by the current Phone Book

entry

NEXT Returns the next file name from the list created by ROUTE

NUM Converts a string to its numeric value

—O—
ORD Converts a string to its ANSI numeric value

—P—
PASSWORD* Returns the password set by the current Phone Book entry

PHONENUMBER* Returns the phone number set by the current Phone Book
entry

POS Returns the position of a given string in the specified string

POSITION Returns the size and position of the specified window

POWER Returns the base argument raised exponentially

PRTMETRICS Returns the current print parameters

PUTPROFILEDATA Creates or updates an INI entry

—R—
RANDOM Returns a random number

RESULT Returns the contents of the result string

REAL Converts a numeric to a real numeric

ROUND Rounds a real numeric to the specified decimal places

ROUTE Creates a list of files matching the specified file type

—S—
SCREEN Retrieves a line of screen data at the specified position

SEARCH Returns the position of the specified string in a session win-
dow

SEARCHINRECT Returns the position of the specified string in a specified
rectangular screen area in a session window

SECONDS Returns a current or derived date and time as a numeric

SETTINGS Returns the current values of the settings options

Functions in Alphabetical Order, continued

2 Functions

91

STR Converts a numeric to a string

SUBSTR Returns a portion of the specified string

SYSMETRICS Returns the current system parameters

SYSTEM* Returns information about the current environment

—T—
TIME Returns a current or derived time as a string

TIMER Returns the elapsed time since the last timer reset

TRIM Removes a given string from the specified string

TYPEDLIBRARYCALL Returns a string representing a return value of a DLL func-
tion call

—U—
UPPER Converts a string to its uppercase equivalent

USERID* Returns the user ID set by the current Phone Book entry

—V—
VISIBLE Indicates whether the specified window is hidden

VERSION Returns the current DCS version number

—W—
WINDOW Indicates if the window is a child of the DCS window

WINDOWHND Returns the handle of the DCS window specified by name

WINDOWNAME Returns the full name of the DCS window specified by
handle

WNDCLASS Indicates the DCS window type of the specified window

WNDFILE Returns the disk name of the file associated with the speci-
fied window

WNDTITLE Returns the title of the specified window

—Z—
ZOOMED Indicates whether the specified window is maximized

Functions in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

92

Note: Commands or functions flagged with an asterisk do not apply to the IBM TN3270 emu-
lation.

Boolean Functions
BAND Returns the bitwise AND value of its arguments

BNOT Returns the bitwise complement of its argument

BOOL Converts an integer numeric to its boolean value

BOR Returns the bitwise OR of its arguments

BXOR Returns the bitwise exclusive OR of its arguments

Configuration Functions (Details)
GETAPPCONFIG Returns a string identifying general application options

GETCONNCONFIG Returns a string identifying current connector setting

GETDISPLAYCONFIG Returns the display settings of a session window

GETEMULCONFIG Returns a string identifying current emulation setting

GETGENERALCONFIG Returns a string identifying general session options

GETXFERCONFIG Returns a string identifying current file transfer setting

Conversion Functions
BOOL Converts an integer numeric to its boolean value

CHR Converts a numeric to its ANSI character value

INT Converts a numeric to an integer numeric

NUM Converts a string to its numeric value

ORD Converts a string to its ANSI numeric value

REAL Converts a numeric to a real numeric

STR Converts a numeric to a string

UPPER Converts a string to its uppercase equivalent

Data Searching and Capturing Functions
BUFFER Returns the text from a screen buffer field.

SCREEN Retrieves a line of screen data at the specified position

SEARCH Returns the position of the specified string in a session
window

SEARCHINRECT Returns the position of the specified string in a specified
rectangular screen area in a session window

Functions by Category

2 Functions

93

Dialog Functions
(DIALOG)HANDLE Returns the window handle of the specified dialog box

(DIALOG) CHECKBOX Determines if the specified check box is checked

(DIALOG) EDITTEXT Returns the contents of the specified edit text control

(DIALOG) LISTBOX Indicates which item in the specified list box is selected

(DIALOG) MESSAGEBOX Displays a message box

(DIALOG) RADIOGROUP Indicates which radio button in a radio group is selected

Dynamic Data Exchange Functions
(DDE) ADVISE Indicates that a DDE ADVISE or UNADVISE message acti-

vated a WHEN ADVISE command

TYPEDLIBRARYCALL Returns a string representing a return value of a DLL func-
tion call

Field Functions
EXFLDATTR Returns the extended field attributes of the specified field

FLDATTR Returns the field attributes of the specified string

FLDATTREXPOS Returns extended field attributes of the field at the specified
row and column

FLDLEN Returns the length of the specified field

FLDNUM Returns the field number of the specified field

FLDPOS Returns the absolute position of the beginning of the speci-
fied field

FLDTEXT Returns text from a screen field.

File Functions
ATTRIBUTES Returns the file attributes of the specified file

DIRECTORY Returns the current working directory for the specified data
file type

DISKSPACE Returns the number of bytes free on the specified drive

EXISTS Determines whether the specified file exists

FILESIZE Returns the number of bytes in the specified file

NEXT Returns the next file name from the list created by ROUTE

ROUTE Creates a list of files matching the specified file type

WNDFILE Returns the disk name of the file associated with the speci-
fied window

Functions by Category, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

94

Math Functions
BAND Returns the bitwise AND value of its arguments

BNOT Returns the bitwise complement of its argument

BOR Returns the bitwise OR of its arguments

BXOR Returns the bitwise exclusive OR of its arguments

POWER Returns the base argument raised exponentially

RANDOM Returns a random number

ROUND Rounds a real numeric to the specified decimal places

Menu Functions
(MENU) CHECKED Returns the state of a checked or unchecked menu item

(MENU) ENABLED Returns the state of a disabled or enabled menu item

String Functions
DECRYPT Returns the decrypted value of the specified encrypted string

ENCRYPT Returns an encrypted equivalent of the specified string

FILTER Replaces specific characters in the specified string

LENGTH Returns the number of characters in the specified string

NETID* Returns the network ID set by the current Phone Book entry

PASSWORD* Returns the password set by the current Phone Book entry

PHONENUMBER* Returns the phone number set by the current Phone Book
entry

POS Returns the position of a given string in the specified string

SUBSTR Returns a portion of the specified string

TRIM Removes a given string from the specified string

UPPER Returns the uppercase equivalent of the specified string

USERID* Returns the user ID set by the current Phone Book entry

System Functions
CURSOR Returns the current cursor position

DATE Returns a current or derived date as a string

ERROR Indicates whether an error occurred during script execution

GETPROFILEDATA Returns a string associated with an INI entry

PRTMETRICS Returns the current print parameters

PUTPROFILEDATA Creates or updates an INI entry

RESULT Returns the contents of the result string

SECONDS Returns a current or derived date and time as a numeric

SETTINGS Returns the current values of the settings options

Functions by Category, continued

2 Functions

95

SYSMETRICS Returns the current system parameters

SYSTEM* Returns information about the current environment

TIME Returns a current or derived time as a string

TIMER Returns the elapsed time since the last timer reset

VERSION Returns the current DCS version number

Table Functions
EOF Indicates if the end of the table has been reached

Telecommunications Functions
CONNECT Returns the connection state with the remote system

CONNECTMESSAGE* Returns the last dial status of a modem sent to the computer

CONNECTRESULT* Returns the last dial status of a modem sent to DCS

GETCONNCONFIG Returns a string identifying current connector setting

Window Functions
ACTIVE Returns the handle number of the active window

DEFAULTSESSIONHANDLE Returns the handle of the script’s default session window

HWNDLIST Returns the handle numbers of all child windows

ICONIC Determines whether a window is minimized

POSITION Returns the size and position of the specified window

VISIBLE Indicates whether the specified window is hidden

WINDOW Indicates if the window is a child of the DCS window

WINDOWHND Returns the handle of the DCS window specified by name

WINDOWNAME Returns the full name of the DCS window specified by
handle

WNDCLASS Indicates the DCS window type of the specified window

WNDFILE Returns the disk name of the file associated with the speci-
fied window

WNDTITLE Returns the title of the specified window

ZOOMED Indicates whether the specified window is maximized

Functions by Category, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

96

ACTIVE ()

The ACTIVE function returns the window handle number of the active child window.

Arguments

The ACTIVE function takes no arguments.

Result

The result is an integer expression specifying the handle of the active child window. If no child
window is open, the result is 0 (zero).

Comments

While the ACTIVE function returns the window handle of any DCS child window, most com-
mands and functions require the window handle of a session window (rather than a memo or
script window).

Example

In this example:

%WindowHND = ACTIVE ()

the variable %WindowHND contains the window handle of the active window. The variable
can then be used as a window handle parameter for any command or function that calls for a
window handle.

ACTIVE

2 Functions

97

ATTRIBUTES (FileName)

The ATTRIBUTES function returns the file attributes of the specified file.

Arguments

FileName

The FileName argument is a string specifying the name of a file. The FileName argument
must specify a valid file name for your system.

Result

If the file exists, the result is an integer which is the sum of the values of its attributes. File at-
tributes have the following numeric values:

Value File Attribute

 1 Read-Only File

 2 Hidden File

 4 System File

 16 Subdirectory

 32 Archived File

 64 Compressed File

Comments

If the specified file does not exist, the ERROR function returns TRUE and the ATTRIBUTES
function returns -1 (negative one).

Example

In this example:

%attrib = ATTRIBUTES (“C:\MSDOS.SYS”)

MSDOS.SYS (located in the root directory of the C: drive) has the attributes Read-Only,
Hidden File and System File. The sum of the values of these attributes is 7 (1+2+4). The AT-
TRIBUTES function assigns the sum to the variable %attrib.

In this example:

$PATH = DIRECTORY (SETTINGS)
%attrib = ATTRIBUTES ($PATH | “fsebbs.ses”)

the DIRECTORY function obtains the path of the default location for session files, which
is then included as a part of the FileName argument for the ATTRIBUTES function. If
fsebbs.ses is an archived file, %attrib assumes the value 32.

ATTRIBUTES

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

98

BAND (Source, Mask)

The BAND function performs a bitwise AND operation on the Source argument.

Arguments

Source

The Source argument is an integer expression.

Mask

The Mask argument is an integer expression.

Result

The result is an integer equivalent to the Source argument, but with bits turned off as speci-
fied by the Mask argument:

Source Mask Result

0 0 0

0 1 0

1 0 0

1 1 1

Comments

Use a Mask argument containing a zero for each bit to turn off and a one for each bit to leave
unmodified. Any representation of the number (binary, decimal, octal, or hexadecimal) can be
used.

The BAND function returns a 32-bit value.

Example

In this example:

%result = BAND (%source, 0xFFFFFFFE)

which uses the hexadecimal representation 0xFFFFFFFE as a mask, %result contains the
contents of %source, but the least significant bit in %result will be 0 (zero - the bit is
turned off).

BAND

2 Functions

99

BNOT (Numeric)

The BNOT function performs a bitwise complement operation (binary zeroes become ones, binary
ones become zeroes) on its argument.

Arguments

Numeric

The Numeric argument is an integer expression.

Result

The result is an integer that is the complement of the Numeric argument:

BNOT Result

0 -1

1 -2

Comments

The BNOT function returns a 32-bit value.

Example

In this example:

%result = BNOT (%source)

the BNOT function returns the complement of the %source variable. If %source origi-
nally contains the value 0x000000FF, %result assumes the value 0xFFFFFF00 after DCS
performs the BNOT function.

BNOT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

100

BOOL (Integer)

The BOOL function returns a Boolean value corresponding to a specified integer.

Arguments

Integer

The Integer argument specifies the integer value to convert.

Result

The result is a Boolean value corresponding to the Integer argument. If the integer equals 0
(zero), the result is FALSE; otherwise the result is TRUE.

Example

In this example:

#nonzero = BOOL (%product)

if the integer variable %product has a value of 0 (zero), #nonzero assumes the value
FALSE.

If the integer variable %product has a value other than 0 (zero), #nonzero assumes the
value TRUE.

BOOL

2 Functions

101

BOR (Source, Mask)

The BOR function performs a bitwise OR operation on the Source argument.

Arguments

Source

The Source argument is an integer expression.

Mask

The Mask argument is an integer expression.

Result

The result is an integer value equivalent to the Source argument, but with bits turned on as
specified by the Mask argument:

Source Mask Result

0 0 0

0 1 1

1 0 1

1 1 1

Comments

Use a Mask argument containing a 1 (one) for each bit to turn on and a 0 (zero) for each bit
to leave unmodified. You may use any representation of the number (binary, decimal, octal, or
hexadecimal).

The BOR function returns a 32-bit value.

Example

In this example:

%result = BOR (%source, 0x00000001)

using the binary representation 0x00000001 as a mask, %result will contain the contents of
%source, but the least significant bit in %result will be 1 (one - the bit is turned on).

BOR

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

102

BUFFER

BUFFER (Row, Column, Length, WinHandle)

The BUFFER function retrieves a line or portion of a line of data at the specified position in a screen
buffer. This function retrieves the text even when the field is hidden.

 This function applies only to 3270 or 5250 emulations.

Arguments

Row

The Row argument is an integer specifying the row number of the desired data. The first row is
considered row zero.

For those emulations which display data in a status line, the data can be captured from the top
and bottom status lines by using the following integers in the Row argument:

Status Line Integer

Top -1

Bottom -2

Column

The optional Column argument is an integer specifying the column number of the desired
data. The first column is considered column zero. If the Column argument is not included, a
default column offset of zero is assumed.

Length

The optional Length argument is a numeric specifying the length (in characters) of the desired
data. If the Length argument is not included, or if Length exceeds the length of the line, the
remainder of the line is collected.

If you use the Length argument, you must also include the Column argument. If you do not
include the Column argument, the script will compile, but the BUFFER function may not
perform as expected.

BUFFER (1, 3, 5, 0x4BD3)(Row, Column, Length, & WinHandle arguments)

or

BUFFER (1, 3) (Row & Column arguments only)

but not

BUFFER (1, , 5) (incorrect usage)

2 Functions

103

WinHandle

The optional WinHandle argument is an integer specifying a particular window in DCS. The
inclusion of this argument allows a script in DCS to retrieve a string from a particular session
window of DCS.

Result

The result is a string value containing the buffer data within the specified area.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the active session window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Examples

In this example:

$T = BUFFER (0)

the string variable $T assumes the string value of the first line of data in the buffer.

In this example:

$chars = BUFFER (1,3,7)

the string variable $chars assumes the string value of seven characters of buffer data, starting
at the second row and fourth column.

BUFFER, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

104

BXOR (Source, Mask)

The BXOR function performs a bitwise exclusive OR operation on the Source argument.

Arguments

Source

The Source argument is an integer expression.

Mask

The Mask argument is an integer expression.

Result

If both the Source and Mask arguments contain the identical bit, the result is the integer 0
(zero); if one of the arguments contains a zero bit, and the other contains a one bit, the result
is the integer 1 (one):

Source Mask Result

0 0 0

0 1 1

1 0 1

1 1 0

Comments

The BXOR function returns a 32-bit value. Any representation of the number (binary, decimal,
octal, or hexadecimal) can be used.

Example

In this example:

%result = BXOR (0x005, 0x00A)

the variable %result contains an integer where the four least significant bits become ones.
The result contains 0x00F (hexadecimal) or 15 (decimal).

BXOR

2 Functions

105

CHR (Numeric)

The CHR function returns the string representation of its Numeric argument.

Arguments

Numeric

The Numeric argument is the value to be converted. If the value is greater than 255, DCS
divides the Numeric argument by 256 and uses the remainder (the modulus) as the numeric
value.

Result

The result is the ASCII representation of the value of the Numeric argument.

Comments

Tip: For more information on numeric representations of ASCII characters, see the
“Character Sets” section in the DCS 9 Online Reference.

Example

In this example:

$letter = CHR (65)

the string variable $letter assumes the value A.

In this example:

KEY Back CHR (127)

the CHR function returns the delete character (the character the [DELETE] key sends), and
the KEY command replaces the character the [BACKSPACE] key sends with the delete char-
acter.

In this example:

SEND CHR (27) | CHR (43)

The first CHR function returns the Escape character, and the second CHR function returns the
Plus character. The Escape and Plus characters are concatenated (joined) together into a string
with the concatenation operator (|). The SEND command then sends the string, followed by a
carriage return character, to a remote system.

CHR

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

106

In this example:

%index = 0x41
WHILE %index <= 0x5A

BEGIN
DISPLAY CHR (%index)
INCREMENT %index

END
DISPLAY CHR (0x0D) | CHR (0x0A)

These commands show a loop that displays the uppercase alphabet (from hexadecimal values)
in the session window, followed by a carriage return (hexadecimal 0D) and a line feed (hexa-
decimal 0A).

CHR, continued

2 Functions

107

CONNECT ()

The CONNECT function indicates whether a session is connected.

Arguments

This function requires no arguments.

Result

The result is a Boolean value, where TRUE indicates that the session connection is active and
FALSE indicates that the session connection is not active.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the active session window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

If you are compiling a script written for a previous version of DCS, make sure all uses of the
CONNECT function are followed by parentheses (even if empty).

Note: DCS waits until a connection is made before returning a value. When the Com-
Direct (Serial) connector is used, the result is returned almost immediately as
long as a port is found. With the ComTAPI (Modem) connector, there will be a
delay.

Note: If you are connected to a COM port, the CONNECT function always returns
TRUE, whether or not the session has established a connection.

Example

In this example:

IF NOT CONNECT ()
GOTO the_end

if no connection is detected, CONNECT returns FALSE and control branches to the line
labeled the_end. By using this function to check for an active connection, the script can
prevent the execution of commands which require a host connection.

CONNECT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

108

CONNECTMESSAGE ()

The CONNECTMESSAGE function returns the current value of the ConnectMessage system variable.

Note: This function does not apply to the IBM TN3270 emulation.

Arguments

This function requires no arguments.

Result

The result is a string representing the current value of the ConnectMessage system variable.

Comments

Compare with the SET CONNECTMESSAGE command.

Example

In this example:

IF CONNECTMESSAGE () = “BUSY”
DISPLAY “aw shucks”

if the last modem dial status message is BUSY, DCS displays the text “aw shucks” in the
active session window.

CONNECTMESSAGE

2 Functions

109

CONNECTRESULT (WinHandle)

The CONNECTRESULT function returns the current value of the ConnectResult system variable.

Note: This function does not apply to the IBM TN3270 emulation.

Arguments

WinHandle

The optional WinHandle argument is an integer identifying a particular DCS session window.
The inclusion of this argument allows a script in DCS to check the status message of a particu-
lar session.

Result

The result is an integer representing the current value of the ConnectResult system variable.

Also see: SET CONNECTRESULT command for a list of possible result values.

Comments

Compare with the SET CONNECTRESULT command.

Example

In this example:

IF CONNECTRESULT () = 0
DISPLAY “We are there!”

if the last modem dial status number is 0 (zero), DCS displays the text “We are there!”
in the active session window.

CONNECTRESULT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

110

CURSOR (WinHandle)

The CURSOR function returns the host cursor position in a window’s work space.

Arguments

WinHandle

The optional WinHandle argument is an integer that identifies a particular DCS child win-
dow. The inclusion of this argument allows a script in DCS to find the position of the host
cursor in a particular window.

Result

The result is an integer, calculated using the following formula:

(row * column width) + column

The first row is row 0 (zero) and the first column is column 0 (zero).

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active child window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Session windows display two cursors. One cursor is the host cursor. Its position in the session
window is determined by the remote system to which DCS is connected. The second cursor
is the local mouse cursor. This cursor shows where your mouse is presently pointing on the
Windows desktop (such as other windows or other applications). In the session window, you
can use the mouse cursor to determine where you are making a selection, and you can interact
with the remote system using the session’s mouse settings.

Example

In this example:

%pos = cursor ()
%row = %pos / 80
%column = %pos % 80

if the cursor is on the second line (row one) at the fifth column (column four), and the column
width is 80, the variable %pos assumes the value 84. This value is derived using the formula
above, as follows: (1 * 80) + 4 = 84. The next two lines decode the %pos variable into the row
(%row = 1) and column (%column = 4).

CURSOR

2 Functions

111

DATE (Seconds)

The DATE function returns a date string, formatted according to the date format you have chosen via
the Windows Control Panel.

Arguments

Seconds

The optional Seconds argument is an integer specifying a number of seconds. DCS uses
12:00:00 A.M. January 1, 1904 as a base (or zero seconds), adds the Seconds argument, and
returns a date. If you do not include the Seconds argument, DCS returns the current system
date.

Result

The result is a string which specifies a date and is formatted according to the format you
have selected in the Windows Control Panel. For example, the date might have the following
format:

month/day/year

Also see: SECONDS function

Example

In this example:

$date = DATE ()

if the current machine date is November 3, 2001, $date might assume the string value
11/03/2001 (depending on your system configuration).

DATE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

112

ADVISE ()

The (DDE) ADVISE function indicates whether the most recently activated (DDE) WHEN ADVISE
command was activated in response to an advise message or an unadvise message.

Arguments

The (DDE) ADVISE function takes no arguments.

Result

The result is a Boolean value where TRUE indicates an advise message was received and
FALSE indicates an unadvise message was received.

Example

In this example:

WHEN ADVISE 0 “item 0”
BEGIN
IF ADVISE ()
PERFORM advisesub
ELSE
PERFORM unadvisesub
END
.
.
*advisesub
.
.
*unadvisesub

If ADVISE returns TRUE, control branches to the line labeled *advisesub. If ADVISE
returns FALSE, control branches to the line labeled *unadvisesub.

(DDE) ADVISE

2 Functions

113

DECRYPT (EncryptedString, Key)

The DECRYPT function returns the original characters of a string encrypted with the ENCRYPT
function.

Arguments

EncryptedString

The EncryptedString argument contains the string produced by the ENCRYPT function.

Key

The Key argument is a string containing the same string used as a key by the ENCRYPT func-
tion to produce the string contained in EncryptedString.

Result

The result is a string value containing the original string.

Comments

The encryption scheme in DCS can produce an encrypted string which contains significantly
more characters than the original string.

Also see: ENCRYPT function

Example

In this example:

Table Define 0 Fields Char 64 Char 48
.
.
.
@R0.1 = $Name
@R0.2 = Encrypt ($Balance, $Key)
Record Write 0
;Begins a loop to gather names and balances
Table Save 0 To “C:\Balnc\” | $filename as Text
;Saves names and balances to a file
.
.
.

DECRYPT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

114

Record Read 0
;Begins a loop to display names and balances
Dialog
Message @R0.1
Message Decrypt (Trim (@R0.2,,” “), $Key)
Dialog End
Wait Delay “5”
.
.
.

sensitive information is saved in the second field of a structured table. The example focuses
on using the contents of a field and the DECRYPT function and, therefore, does not contain
looping structures.

The script encrypts the content of the $Balance variable and then places the encrypted
string into the second field of a record. The number of characters allowed in the second field is
about three or four times larger than the number of characters in the original string.

Note: If the script does not allow enough character positions in a field for all of the
characters in the encrypted string, DCS discards the characters that cannot fit
into the field. If characters are discarded from, or added to, an encrypted string,
DCS will not decrypt the string.

Later, the script reads a record from the table and decrypts the second field of the record.
However, since the second field is larger than the original string (or than the encrypted string),
the script must delete any spaces from the end of the field before the DECRYPT function will
decrypt the encrypted string. The TRIM function removes the extra spaces.

DECRYPT, continued

2 Functions

115

DEFAULTSESSIONHANDLE ()

The DEFAULTSESSIONHANDLE function returns an integer identifying the window handle of the
default session window.

Arguments

The DEFAULTSESSIONHANDLE function takes no arguments.

Result

The DEFAULTSESSIONHANDLE function returns the integer window handle of the default
session window for this script. If no default session handle is defined, a -1 (negative one) is
returned.

Comments

Also see: Windows & Window Handles section for more information about the default
session window.

 SET DEFAULTSESSIONHANDLE command

Example

%SessionHandle = DefaultSessionHandle ()

DEFAULTSESSIONHANDLE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

116

CHECKBOX (ControlNum, DialogIndex)

The (DIALOG) CHECKBOX function is used with the DIALOG command to indicate a selected (en-
abled) check box in the dialog.

Arguments

ControlNum

The optional ControlNum argument contains a value, from 1 to n, to identify a specific check
box, where n is the number of check box controls in the dialog box. If only one check box ex-
ists in the dialog, use of the ControlNum argument is not required.

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) to indicate the dialog that
contains the check box to test. If the DialogIndex argument is not included, the default value
of zero is used.

Result

The result is a numeric value, where 1 (one) indicates that the check box control is checked
and 0 (zero) indicates unchecked. If the check box control is invalid, this function returns -1
(negative one).

Comments

This function returns invalid results if the DIALOG CANCEL command is executed before the
(DIALOG) CHECKBOX function. That is, if the dialog box no longer exists, the result of this
function is invalid.

Also see: (DIALOG) CHECKBOX command

Example

These commands:

IF CHECKBOX (3) = 1
PERFORM read_file
ELSE
PERFORM write_file

determine which subroutine to perform. If the third check box in the dialog is checked,
read_file is performed. If it is unchecked, write_file is performed.

(DIALOG) CHECKBOX

2 Functions

117

EDITTEXT (ControlNum, DialogIndex)

The (DIALOG) EDITTEXT function is used with the DIALOG command. It returns the current con-
tents of the specified edit text control.

Arguments

ControlNum

The optional ControlNum argument is a value (from 1 to n) specifying an edit text control,
where n is the number of edit text controls in the dialog box. If only one edit text control ex-
ists in the dialog, inclusion of the ControlNum argument is not required.

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) that indicates the dialog that
contains the edit text control to test. If the DialogIndex argument is not included, DialogIn-
dex defaults to zero (0).

Result

The result is a string value containing the current contents of the specified edit text control. If
the specified edit text control does not exist, the result is a null string.

Comments

The (DIALOG) EDITTEXT function returns a result only while the dialog box is still active
(prior to a DIALOG CANCEL command). That is, if the dialog box no longer exists, the result
of this function is invalid.

Also see: (DIALOG) EDITTEXT command

Example

In this example:

$answer_2 = EDITTEXT (2)

the string variable $answer_2 assumes the value of the characters in the second edit text
control.

(DIALOG) EDITTEXT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

118

LISTBOX (ControlNum, DialogIndex)

The (DIALOG) LISTBOX function is used with the DIALOG command to indicate which list
box item is selected.

Arguments

ControlNum

The optional ControlNum argument is a value (from 1 to n) specifying a list box, where n is
the number of list boxes in the dialog box. You do not need to include the ControlNum argu-
ment if there is only one list box in the dialog box.

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) indicating which dialog
contains the list box to test. If you do not include the DialogIndex argument, DCS uses the
default DialogIndex value of zero (0).

Result

The result is an integer numeric value corresponding to the record number of the selected list
box item. If no item is selected, the result is -1 (negative one). If a list box control that does
not exist is specified, the result is also -1 (negative one).

Comments

The (DIALOG) LISTBOX function returns a result only while the specified dialog box is still
active (prior to the DIALOG CANCEL command). That is, if the dialog box no longer exists,
the result of this function is invalid.

Also see: (DIALOG) LISTBOX command

Example

In this example

%1 = LISTBOX (1)
IF (%1 <> -1)
RECORD READ 0 AT %1

if the third item in the specified list box has been selected, the numeric variable %1 assumes
the value 2 (records are numbered from 0 to n- 1). DCS can then execute a RECORD READ
command to retrieve the data stored in record two.

(DIALOG) LISTBOX

2 Functions

119

MESSAGEBOX (Message, Title, Style)

The MESSAGEBOX function displays a message dialog box in the specified style with the supplied
title and message and returns the integer value for the selected user action (depending on the selected
style).

Arguments

Message

The Message argument is a string variable containing the message to be displayed in the
dialog box.

Title

The Title argument is a string variable containing the title to be displayed in the title bar of the
dialog box.

Style

The Style argument is an integer value that describes the style of the message dialog box. The
defined values can be added together to be used in combination.

In the table below, the first six values define the text and number of buttons to display below
the Message. The last four values define the ICON symbol that will be displayed to the left of
the Message.

Description Style Value

OK 0

OK - CANCEL 1

ABORT – RETRY - IGNORE 2

YES – NO - CANCEL 3

YES - NO 4

RETRY - CANCEL 5

STOP – ERROR ICON 16

QUESTION ICON 32

WARNING ICON 48

INFORMATION ICON 64

(DIALOG) MESSAGEBOX

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

120

Results

The result is an integer value corresponding to the style button selected by the user. This value
is used to determine the action to be taken.

Return values

Description Return Value

OK 1

CANCEL 2

ABORT 3

RETRY 4

IGNORE 5

YES 6

NO 7

Comments

The ERROR function is set to TRUE if the message box can not be displayed for any reason.

Examples

This example:

%ret = messagebox (“Test Message”, “3 Button Box”, 3)
If %ret = 6 GOTO YES_Process
If %ret = 7 GOTO NO_Process
If %ret = 2 GOTO CANCEL_Process

displays a Message dialog with the Title set to “3 Button Box”, the String “Test Message”
as the Message text, three buttons below the message labeled YES, NO and CANCEL, and no
ICON is displayed.

This example:

%ret = messagebox (“Test Message 2”, “2 Button Box with
ICON”, 17)
If %ret = 1 GOTO OK_Process
If %ret = 2 GOTO CANCEL_Process

displays a message dialog with the Title set to “2 Button Boxwith ICON”, the String
“Test Message 2” as the message text, two buttons below the message labeled OK and
CANCEL, and the STOP/ERROR ICON is displayed.

(DIALOG) MESSAGEBOX, continued

2 Functions

121

RADIOGROUP (ControlNum, DialogIndex)

The (DIALOG) RADIOGROUP function is used with the DIALOG command. It indicates which radio
button in the specified radio group is selected.

Arguments

ControlNum

The optional ControlNum argument is a value (from 1 to n) specifying a radio group, where n
is the number of radio groups in the dialog box. You do not need to include the ControlNum
argument if there is only one radio group in the dialog box.

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) indicating which dialog con-
tains the radio group you want to test. If you do not include the DialogIndex argument, DCS
uses the default DialogIndex value of zero.

Result

The result is an integer numeric value corresponding to the number of the selected radio
button in the specified radio group. If the specified radio group does not exist, this function
returns -1(negative one).

Comments

The (DIALOG) RADIOGROUP function retrieves a result only while the specified dialog box
is still active (prior to the DIALOG CANCEL command). That is, if the dialog box no longer
exists, the result of this function is invalid.

Also see: (DIALOG) RADIOGROUP command

Example

In this example:

%rad2 = RADIOGROUP (2)

if the third radio button in radio group two has been selected, the numeric variable %rad2
assumes the value 3.

(DIALOG) RADIOGROUP

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

122

DIALOGHANDLE (Index)

The DIALOGHANDLE function returns the window handle of the specified dialog box.

Arguments

Index

The optional Index argument is an integer (0 to 15) identifying a particular dialog box. Zero
(0) will be used if no index is provided.

Results

The result is an integer specifying the window handle of the window. If an error occurs, the
result is a window handle of zero (0).

Comments

If the window handle cannot be returned, the ERROR function is set to TRUE .

DIALOGHANDLE

2 Functions

123

DIRECTORY (Type)

The DIRECTORY function returns the path of default directory for the specified type of file.

Arguments

Type

The Type argument is one of the following keywords:

Keyword DCS Directory Default Path*

DNLOAD Download directory …DNLOAD\

DYNASYS Executables/DLLs directory C:\PROGRAM FILES\FUTURESOFT\DCSERIES

ICONPATH Icon files directory C:\PROGRAM FILES\FUTURESOFT

MEMO Memo directory …MEMOS\

SCRIPT Script-text directory …SCRIPTS\

SETTINGS Settings directory …SESSION\

TASK Compiled script directory …SCRIPTS\

TRACEPATH Trace files directory …TRACE\

UPLOAD Upload directory …UPLOAD\

*The default path for WIN95/98 users on all directories begins with C:\PROGRAM FILES\FU-
TURESOFT\DCSERIES\…

*The default path for WIN/NT users on all directories (except DYNASYSE and ICONPATH)
begins with C:\WINNT\PROFILES\username\PERSONAL\…

Keyword Windows Directory Default Path

WINDOWS Main directory C:\WINDOWS\

WINSYS System directory C:\WINDOWS\SYSTEM\ or C:\WINNT\System32

Result

The result is a string value containing the current default directory for the type of file as de-
fined in the File Locations tab of the Options dialog.

Comments

The default directory for a file type is originally specified during installation and is stored in
the Windows registry. These values can be viewed and set using the File Locations tab of the
Options dialog (Tools > Options). Also, each time DCS executes a SET DIRECTORY com-
mand, DCS changes the default directory for a file type to the specified directory.

The comment above does not apply to the directories found with the DYNASYS, WIN-
DOWS, and WINSYS keywords. You cannot change these paths with the SET DIRECTORY
command or change them in the File Locations tab.

DIRECTORY

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

124

Example

In this example:

$path = DIRECTORY (MEMO)

if a memo was last opened in the default MEMO directory on drive C:, $path contains C:\
PROGRAM FILES\FUTURESOFT\DCSERIES\MEMOS.

DIRECTORY, continued

2 Functions

125

DISKSPACE (Drive)

The DISKSPACE function returns the number of bytes free on the specified drive.

Arguments

Drive

The optional Drive argument is a string specifying the desired drive (the trailing colon is
optional). The Drive argument must specify a valid drive for your system. If the drive is not
specified, the default is the current working drive.

Result

The result is an integer value indicating the number of bytes of free storage on the specified
drive.

Example

%free = DISKSPACE (“C:”)

DISKSPACE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

126

ENCRYPT (OrigString, Key)

The ENCRYPT function encodes a specified string using a specified encryption key.

Arguments

OrigString

The OrigString argument contains the string to encode.

Key

The Key argument is a string which the function will use as an encryption key.

Result

The result is a string variable containing the encoded version of the original string.

Comments

The encryption scheme produces an encrypted string which might have significantly more
characters than the original string.

To decode the result of this function, you must provide the encrypted string and the encryp-
tion key used to encrypt the string to the DECRYPT function.

Also see: DECRYPT function

Example

In the example below:

$save = ENCRYPT (“Arnold Wilson”, “secret”)
DISPLAY (0,0) $save
DISPLAY (1,0) DECRYPT ($save, “secret”)

the ENCRYPT function encodes the contents of the string Arnold Wilson, such that the
string contained in $save will bear no resemblance to the original string. The string secret
is the encryption key. The first DISPLAY command displays the encrypted string. The second
DISPLAY command displays the string Arnold Wilson, since the correct encryption key
is given to the DECRYPT function.

ENCRYPT

2 Functions

127

EOF ()

The EOF function is used with the RECORD READ command to indicate whether the script has at-
tempted to read past the end of a table.

Arguments

The EOF function takes no arguments.

Result

The result is a Boolean value, where TRUE indicates the end of the table has been passed, and
FALSE indicates the read was successful. If the EOF function returns TRUE, then the result of
a read will not be valid.

Example

In this example:

Record Read 1 at 0
While not EOF()
Begin
Display @R1
Record Read 1
End
Display “Done”

DCS attempts to read the contents of table one. Each record is displayed as it is read. If the
end of file is reached, EOF evaluates to TRUE. Execution then branches past the END com-
mand, and the text Done is displayed in the session window.

EOF

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

128

ERROR ()

The ERROR function indicates whether an error occurred during script execution.

Arguments

The ERROR function takes no arguments.

Result

The result is a Boolean value, where TRUE indicates that an error occurred during script ex-
ecution, and FALSE indicates that an error did not occur during script execution.

Also see: RESULT function

Example

In this example:

File Copy “c:\config.sys” to “c:\config.bak”
If Error()
Begin
Display (0,0) “Unable to copy file”
Cancel
End

DCS attempts to copy a file. If DCS is unable to copy c:\config.sys to c:\config.
bak, the ERROR function returns TRUE and an error message is displayed. Otherwise, the
copy operation succeeds and the script is terminated.

ERROR

2 Functions

129

EXFLDATTR (FieldNum, WinHandle)

The EXFLDATTR function is only valid with IBM TN3270, IBM TN5250 or Tandem 6530 emulator
sessions. The EXFLDATTR function indifies the normal and extended field attributes for a field.

Arguments

FieldNum

The FieldNum argument is an integer and identifies a field in a session window. For informa-
tion on acquiring the field number, see the FLDNUM function.

WinHandle

The optional WinHandle argument is an integer and identifies a window in DCS. This argu-
ment allows a script to check the attributes of a field in a particular session, not merely the
active session window.

Result

For the Tandem emulation the result is an integer. However, you must resolve the result into
its description with the bitwise functions: BAND, BNOT, BOR, and BXOR. The integer is
composed of two bytes. Each of the bit positions have significance in determining the attri-
butes for a field.

bits 0 - 2 - entry type

0 = Free entry

1 = Alpha

2 = Numeric

3 = Aphanumeric

4 = Full numeric

5 = Full numeric w/space

6 = Alpha w/space

7 = Alpha numeric w/space

bits 3 - 4 - extended data type

0 = normal (keyboard)

1 = upshift

2 = AID

4 = Any device (keyboard, AID)

6 = reserved

bit 6 - uses enhanced color (1 = on)

bit 7 - Protected/Unprotected (1 = protected)

EXFLDATTR

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

130

For the IBM TN3270 emulation the result is an integer. However, you must resolve the result
into its description with the bitwise functions: BAND, BNOT, BOR, and BXOR. The integer
is composed of two bytes. Each of the bit positions have significance in determining the at-
tributes for a field.

High Byte

Bit 7: x Not used

Bit 6: x Not used

Bit 5: 0 = Unprotected

 1 = Protected

Bit 4: 0 = Alphanumeric

 1 = Numeric

Bits 3, 2: 00 = Normal display, and Light pen not detected

 01 = Normal display, and Light pen detected

 10 = High intensity display, and Light pen detected

 11 = No display, and Light pen not detected

Bit 1: 0 = No extended field attributes

 1 = Extended field attributes specified

Bit 0: 0 = Not modified

 1 = Modified

Low Byte

Bit 7: 0 = Opaque

 1 = Transparent

Bits 6,5,4: 000 = Default color

 001 = Blue

 010 = Red

 011 = Pink

 100 = Green

 101 = Turquoise

 110 = Yellow

 111 = White (neutral)

Bit 3: 0 = Normal Intensity

 1 = High Intensity

Bit 2: 0 = No Underscore

 1 = Underscore

Bit 1: 0 = No Reverse video

 1 = Reverse video

Bit 0: 0 = No Blink

 1 = Blink

EXFLDATTR, continued

2 Functions

131

For the IBM TN5250 emulation the result is an integer. However, you must resolve the result
into its description with the bitwise functions: BAND, BNOT, BOR, and BXOR. The integer is
composed of two bytes. Each of the bit positions have significance in determining the attri-
butes for a field.

High Byte

Bits 7,6: 01

Bit 5: 0 = Not a Bypass field

 1 = Bypass field

Bit 4: 0 = Duplication not allowed in this field

 1 = Duplication is allowed in this field

Bit 3: 0 = Field has not been Modified

 1 = Field has been modified

Bits 2,1,0: 000 = Alphabetic shift

 001 = Alphabetic only

 010 = Numeric shift

 011 = Numeric only

 100 = Katakana shift

 101 = Digits only (5294)

 110 = I/O

 111 = Signed numeric

Low Byte

Bit 7: 0 = No auto enter

 1 = Auto enter

Bit 6: 0 = Field exit key is not required

 1 = Field exit key is required

Bit 5: 0 = Accept lowercase letters

 1 = Translate operator-entered letters to uppercase

Bit 4: = Reserved

Bit 3: 0 = Not a mandatory enter field

 1 = Is a mandatory enter field

Bits 2,1, 0: 000 = No adjust specified

 001 = Reserved

 010 = Reserved

 011 = Reserved

 100 = Reserved

 101 = Right adjust, zero fill

 110 = Right adjust, blank fill

 111 = Mandatory fillComments

EXFLDATTR, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

132

If the WinHandle argument is not included in this function, the window handle for the cur-
rent session will be used as the window handle argument in the function. The window handle
for a particular window may be retrieved with the functions HWNDLIST or WINDOWHND, or
from the CONNECT command.

Example

This script:

%WinHandle = WindowHnd (“Scr1”)
%FieldNum = FldNum (5, 20, %WinHandle)
%FieldAttrs = ExFldAttr (%FieldNum, %WinHandle)
%MaskAttrs = BNot (%FieldAttrs)

; In binary, 0x2000 is 0010.0000.0000.0000

%MaskAttrs = BOr (%MaskAttrs, 0x2000)
%MaskAttrs = BAnd (%FieldAttrs, %MaskAttrs)
If %MaskAttrs = 0
 Perform DisplayDialog (“Field “ | Str (%FieldNum) |
“ is uprotected.”)
Else Perform DisplayDialog (“Field “ | Str (%FieldNum) |
“ is protected.”)

Return

;**

*DisplayDialog ($String)

Dialog “Results”
Message $String
Button “OK” Resume

Dialog End
Wait Resume
Return

looks at a field located on the fifth row and twentieth column of the session Scr1 and de-
termines whether the field is protected or unprotected. For purposes of illustration, the script
only displays a dialog indicating its finding.

By using the bitwise functions in successive order, the script is able to determine the value of
bit position thirteen. A mask is created to cover over the bits that the script is not interested in,
and in this case the script is only interested in bit position thirteen. The BNOT function creates
the initial mask, which is the negative of the integer for the field attributes. If this initial mask
were used as a mask, it would cover over all the bits of the attributes number. The BOR func-
tion performs an OR operation on a binary number in the form of a hexadecimal number to

EXFLDATTR, continued

2 Functions

133

EXFLDATTR, continued

the mask. In this case, the BOR function makes sure that bit position thirteen in the mask is 1
(one). Then the BAND function performs an AND operation on the original attributes num-
ber with the mask. The result of this process could only be 0 (zero) or a number that is not
zero. If the result is zero, the field is unprotected. If the result is not zero, the field is protected.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

134

EXISTS (FileName)

The EXISTS function indicates whether the specified file exists.

Arguments

FileName

The FileName argument is a string specifying the name of a file. The FileName argument
must specify a valid file name for your system.

Result

The result is a Boolean value, where TRUE indicates the specified file exists.

Comments

If you do not specify a path with the file name, the default is DCS’s default installation direc-
tory.

Example

In this example:

IF EXISTS (DIRECTORY (MEMO) | “MEMO.TXT”)
FILE RENAME DIRECTORY (MEMO) | “MEMO.TXT” \
 TO DIRECTORY (MEMO) | “MEMO.BAK”

If the file MEMO.TXT exists in the default MEMO directory, the EXISTS function evaluates to
TRUE, and the file is renamed MEMO.BAK.

EXISTS

2 Functions

135

FILESIZE (FileName)

The FILESIZE function returns the number of bytes in the specified file.

Arguments

FileName

The FileName argument is a string specifying the name of a file. The FileName argument
must specify a valid file name for your system.

Result

The result is a numeric value indicating the size of the specified file in bytes.

Comments

If the file does not exist, the ERROR function returns TRUE and the result is -1.

If you do not specify a path with the file name, the default is the DCS 9 default installation
directory.

Example

%size = FILESIZE (“EXCHANGE.PST”)

FILESIZE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

136

FILTER (String, SearchChars, ReplaceChars)

The FILTER function replaces characters found in the specified string.

Arguments

String

The String argument specifies the string to search.

SearchChars

The SearchChars argument is a string specifying one or more characters for which to search.
If more than one character is specified, DCS searches for each individual character specified,
not character sequences.

ReplaceChars

The optional ReplaceChars argument is a string specifying one or more characters which will
replace found characters. There is a one-to-one correspondence between the characters speci-
fied in the SearchChars argument and the ReplaceChars argument.

Characters specified in the SearchChars argument that do not have corresponding characters
in the ReplaceChars argument are deleted. Characters specified in the ReplaceChars argu-
ment that do not have corresponding characters in the SearchChars argument are ignored.

Result

The result is a string value containing the modified string.

Comments

Both the SearchChars and the ReplaceChars arguments are case-sensitive.

Example

In this example:

$file = FILTER (“\TEST\USER\FILE”, “\”, “:”)

the FILTER function was used to convert a DOS file name to a Macintosh file name. The
string variable $file assumes the value :TEST:USER:FILE.

In this example:

$string = FILTER (“ABCAX0AX234”, “AX0”, “Zn”)

the string variable $string assumes the value ZBCZnZn234. All A characters are replaced
with Z characters, all X characters are replaced with n characters, and all 0 (zero) characters are
deleted.

FILTER

2 Functions

137

FILTER, continued

In this example:

$string = FILTER (“ABCAX0AX234”, “AX0”)

the string variable $string contains the value BC234. All A, X and 0 (zero) characters are
deleted.

In this example:

$string = FILTER (“A B C D”, “ “, “”)

the string variable $string contains the value ABCD. All spaces are deleted.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

138

FLDATTR (Field, WinHandle)

The FLDATTR function is only valid with IBM TN3270, IBM TN5250, and Tandem 6530 emulation
sessions. It returns the field attributes for the specified field in a session window.

Arguments

Field

The Field argument is a numeric identifying the field.

WinHandle

The optional WinHandle argument is an integer specifying a particular session window in
DCS.

Result

For the Tandem emulation the result is an integer value specifying one of the following field
attributes:

Value Field Attribute

0 Unprotected

32 Protected

For the IBM3270 emulation The result is an integer value specifying one of the following field
attributes:

Value Field Attribute

0 Normal (alphanumeric, unprotected)

16 Numeric (unprotected)

32 Protected (alphanumeric)

48 Numeric (protected)

For the IBM TN5250 emulation the result is an integer value between hex 0x20 and 0x3F
(decimal 32 – 64). This value corresponds to the IBM TN5250 screen attribute (full color).

Note: If ERROR is set to TRUE, a -1 (negative one) is returned.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the active session window.

The ERROR function returns TRUE if either Field or WinHandle is invalid.

FLDATTR

2 Functions

139

Example

In this example:

%attrib = FLDATTR (3)

if field three contains numeric unprotected data, the integer variable %attrib assumes the
value 16.

In this example:

%attrib = FLDATTR (2, %winhnd)

if the second field in the session specified by the variable %winhnd contains numeric pro-
tected data, the integer variable %attrib assumes the value 48.

FLDATTR, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

140

FLDATTREXPOS (Row, Column, WinHandle)

The FLDATTREXPOS function is only valid with IBM TN3270, IBM TN5250, and Tandem 6530
emulation sessions. The FLDATTREXPOS function indicates the normal and extended field attributes
for a field at a specific position.

Arguments

Row

The Row argument is an integer specifying the row number of a field. The first row is consid-
ered row 0 (zero).

Column

The Column argument is an integer specifying the column number of a field. The first column
is considered column 0 (zero).

WinHandle

The optional WinHandle argument is an integer and identifies a window in DCS. This argu-
ment allows a script to check the attributes of a field in a particular session window.

Result

The result is an integer. However, you must resolve the result into its description with bit-wise
operators (AND, NOT, OR, and XOR). The integer is composed of two bytes. Each of the
sixteen bit positions have significance in determining the attributes for a field.

Also see: EXFLDATTR tables

Comments

If the WinHandle argument is not included in this function, the window handle for the cur-
rent session will be used as the window handle argument in the function. The window handle
for a particular window may be retrieved with the functions HWNDLIST or WINDOWHND, or
from the CONNECT command.

Example

See the example for the EXFLDATTR function, substituting FLDATTREXPOS for EXFLDAT-
TR; the major difference is the use of a row and column in the FLDATTREXPOS function,
rather than field number used in the EXFLDATTR function.

FLDATTREXPOS

2 Functions

141

FLDLEN (Field, WinHandle)

The FLDLEN function is only valid with IBM3270, IBM5250, and Tandem 6530 emulator sessions.
It returns the length of the specified field in a session window.

Arguments

Field

The Field argument is a numeric identifying the field.

WinHandle

The optional WinHandle argument is an integer specifying a particular session window in
DCS.

Result

The result is a numeric value indicating the length in characters of the specified field.

Note: If ERROR is set TRUE a negative one (-1) is returned.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the current session window.

The ERROR function returns TRUE if either the Field argument or the WinHandle argument
is invalid.

Example

In this example:

%length_3 = FLDLEN (3)

if field three begins on the first line (row zero) at the tenth column (column nine) and ends
on the third line (row two) at the 19th column (column 20), and the column width is 80, the
numeric variable %length_3 assumes the value 171.

FLDLEN

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

142

FLDNUM (Row, Column, WinHandle)

The FLDNUM function is only valid with IBM TN3270, IBM TN5250, and Tandem 6530 emulator
sessions. The FLDNUM function returns the field number, or identifier, of a field in a session window.

Arguments:

Row

The Row argument is an integer specifying the row number of a field. The first row is consid-
ered row 0 (zero).

Column

The Column argument is an integer specifying the column number of a field. The first column
is considered column 0 (zero).

WinHandle

The optional WinHandle argument is an integer and identifies a window in DCS. This argu-
ment allows a script to check the attributes of a field in a particular session, not merely the
terminal window currently in focus.

The ERROR function returns TRUE if the WinHandle argument is invalid.

Result

The result is an integer field number.

If ERROR is set TRUE a negative one (-1) is returned.

Comments

If the WinHandle argument is not included in this function, the window handle for the cur-
rent session will be used as the window handle argument in the function. The window handle
for a particular window may be retrieved with the functions, HWNDLIST or WINDOWHND,
or from the CONNECT command.

Example

See the example for the EXFLDATTR function.

FLDNUM

2 Functions

143

FLDPOS (Field, WinHandle)

The FLDPOS function is only valid with IBM TN3270, IBM TN5250, and Tandem 6530 emulation
sessions. It returns the absolute position of the beginning of the specified field in a session window.

Arguments

Field

The Field argument is a numeric identifying the field.

WinHandle

The optional WinHandle argument is an integer identifying a particular window containing a
session in DCS.

Result

The result is a numeric value calculated using the following formula:

(row * column width) + column

The first line is row 0 (zero) and the first column is column 0 (zero).

If ERROR is set TRUE a negative one (-1) is returned.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the current session window.

The ERROR function returns TRUE if either the Field argument or the WinHandle argument
is invalid.

Example

In this example:

%pos3 = FLDPOS(3)
%row = %pos3 / 80
%column = %pos3 % 80

if field 3 (three) starts on the second line (row one) at the tenth column (column nine), and
the column width is 80, the numeric variable %pos3 assumes value 89. The next two lines
decode the %pos variable into the row (%row = 1) and column (%column = 9).

FLDPOS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

144

FLDTEXT (Field, WinHandle)

The FLDTEXT function is only valid with IBM TN3270 and IBM TN5250 emulation sessions. It
returns the text for the specified field in a session window.

Arguments

Field

The Field argument is a numeric identifying the field.

WinHandle

The optional WinHandle argument is an integer identifying a particular window containing a
session in DCS.

Result

The result is a text string.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the current session window.

The ERROR function returns TRUE if either the Field argument or the WinHandle argument
is invalid.

Example

In this example:

%N = FLDNUM(2,12)
$T = FLDTEXT(%N)

The variable $T will contain all the text from the field around row 2, column 12 regardless of
where the field begins and ends.

FLDTEXT

2 Functions

145

GETAPPCONFIG (KeyString)

The GETAPPCONFIG function returns a string identifying the current state of a specified application-
level setting.

Arguments

KeyString

The KeyString argument must be a key string which is valid for the APPCONFIG command.
The GETAPPCONFIG function will return a string identifying the current state of that setting.

The values returned by the GETAPPCONFIG function are listed in the APPCONFIG com-
mand. Also see the APPCONFIG command for a list of valid strings which may be used as
KeyString arguments.

Result

The GETAPPCONFIG function returns a string representing the current state of the setting
specified by the KeyString.

Note: In some instances DCS will return a 1 for TRUE and a 0 for FALSE. It is
recommended that the code check for both conditions (if $retval = TRUE or
$retval = “1 …) to avoid possible logic flow problems.

If ERROR is set to TRUE, a null string is returned.

Comments

The ERROR function returns TRUE if the KeyString argument is invalid.

Application configuration may be set using the Options dialog (select Tools > Options), or
with the APPCONFIG command.

Example

This script segment:

$bitmap = GETAPPCONFIG (“ShowBkgrdBitMap”)
If $bitmap = “TRUE” APPCONFIG “ShowBkgrdBitMap=FALSE”

checks the current setting of the Show Background Bitmap option. If the setting is checked
(active), it is disabled.

GETAPPCONFIG

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

146

GETCONNCONFIG (KeyString, WinHandle)

The GETCONNCONFIG function returns a string identifying the current state of a connector setting
for the default session window.

Arguments

KeyString

The KeyString argument must be a key string recognized by the connector. The GET-
CONNCONFIG function returns a string representing the current state of that setting. For
example, GETCONNCONFIG (“DataBits”) would return either the string 7 or the string 8.

See the CONNCONFIG command for a list of key strings.

WinHandle

The optional WinHandle argument is an integer identifying a particular session window.

Result

The GETCONNCONFIG function returns a string identifying the current state of a connector
setting for the session in the script’s default session window.

Note: In some instances DCS returns a 1 for TRUE and a 0 for FALSE. It is recom-
mended that the code check for both conditions (if $retval = TRUE or $retval
= “1 …) to avoid possible logic flow problems.

If ERROR is set TRUE a null string is returned.

Comments

The connector setting for a session window is specified on the Connectors tab in the Session
Properties dialog, or with the CONNCONFIG command.

If WinHandle is not specified, DCS applies the connector configuration settings to the active
session window.

If either the KeyString or WinHandle argument is invalid, the ERROR function returns
TRUE.

Example

Set Defaultsessionhandle Active()
$ConnDataBits = GETCONNCONFIG (“DataBits”)
%NumBits = Num ($ConnDataBits)

Assuming that the default session’s connector is currently using a data bit setting of 8 (eight),
string 8 is assigned to $ConnDataBits. The variable %NumBits is assigned the numerical
value of the string, which in this case is the numerical value 8.

If the script does not have a default session window, DCS returns a null string.

GETCONNCONFIG

2 Functions

147

GETDISPLAYCONFIG (KeyString, WinHandle)

The GETDISPLAYCONFIG function returns a string identifying the current display settings for the
default session window.

Arguments

KeyString

The KeyString argument must be a keyword recognized by DCS for session windows. See the
DISPLAYCONFIG command for a list of keywords and possible return values.

WinHandle

The optional WinHandle argument is an integer identifying a particular session window of
DCS.

Result

The GETDISPLAYCONFIG function returns a string representing the current settings of a
session window.

Note: In some instances DCS returns a 1 for TRUE and a 0 for FALSE. It is recom-
mended that the code check for both conditions (if $retval = TRUE or $retval
= “1 …) to avoid possible logic flow problems.

If ERROR is set TRUE a null string is returned.

Comments

The display settings for a session window are set on the Displays tab in the Session Properties
dialog, or with the DISPLAYCONFIG command.

If WinHandle is not specified, DCS retrieves the display settings for the active session window.

The ERROR function returns TRUE if either the Field or WinHandle argument is invalid.

Also see: DISPLAYCONFIG command

This script line:

$Cursor = GetDisplayConfig (“CursorVisible”)
$DisplayInfo = $Cursor | “, “ | GetDisplayConfig (“Cursor-
Type”)

might return a string similar to the following:

 1, BLOCK

This string indicates the cursor is displayed and is a block character.

GETDISPLAYCONFIG

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

148

GETEMULCONFIG (KeyString, WinHandle)

The GETEMULCONFIG function returns a string identifying the current state of an emulation setting
for the session in the script’s default session window.

Arguments

KeyString

The KeyString argument must be a key string recognized by the emulation. The GETEMUL-
CONFIG function returns a string representing the current state of that setting. For example,
GETEMULCONFIG(“Columns”) might return either the string 80 or the string 132.

See the EMULCONFIG command for a list of key strings.

WinHandle

The optional WinHandle argument is an integer identifying a particular session window.

Result

The GETEMULCONFIG function returns a string identifying the current state of an emulation
setting for the session in the script’s default session window.

Note: In some instances DCS returns a 1 for TRUE and a 0 for FALSE. It is recom-
mended that the code check for both conditions (if $retval = TRUE or $retval
= “1 …) to avoid possible logic flow problems.

If ERROR is set TRUE a null string is returned.

Comments

If WinHandle is not specified, the emulation configuration settings are applied to the active
session window.

The emulation settings for a session window are specified on the Emulations tab in the Ses-
sion Properties dialog, or with the EMULCONFIG command.

The ERROR function returns TRUE if either the KeyString or WinHandle argument is
invalid.

Example

In this example:

$EmulCols = GETEMULCONFIG (“Columns”)
%NumColumns = NUM ($EmulCols)

assuming that the default session’s emulation is currently using a column width setting of 132,
The string “132” is assigned to $EmulCols. The variable %NumColumns is assigned the
numerical value of the string, which in this case is the numerical value 132.

GETEMULCONFIG

2 Functions

149

GETGENERALCONFIG(KeyString, WinHandle)

The GETGENERALCONFIG function returns a string identifying which options have been configured
in the General tab of the Session Properties dialog for the active session.

Arguments

KeyString

The KeyString argument must be a key string which is valid for the GENERALCONFIG com-
mand. The GETGENERALCONFIG function returns a string representing the current state
of that setting. For example, GENERALCONFIG(“DisplayErrorInformation”) returns a string
value of either TRUE or FALSE.

See the GENERALCONFIG command for a list of key strings.

WinHandle

The optional WinHandle argument is an integer identifying a particular session window.

Result

The GETGENERALCONFIG function returns a string representing the current state of the
setting specified by the KeyString.

Note: In some instances DCS returns a 1 for TRUE and a 0 for FALSE. It is recom-
mended that the code check for both conditions (if $retval = TRUE or $retval =
“1 …) to avoid possible logic flow problems.

If ERROR is set to TRUE a null string is returned.

Comments

If WinHandle is not specified, the configuration settings are applied to the active session
window.

The general settings for a session window are specified on the General tab in the Session
Properties dialog, or with the GENERALCONFIG command.

The ERROR function returns TRUE if either the KeyString or WinHandle argument is
invalid.

Example

This script segment:

$Autoconnect = GETGENERALCONFIG (“AutoConnect”)
If $Autconnect = “TRUE” GENERALCONFIG “AutoConnect=FALSE”

checks the current setting of the Auto Connect option. If the setting is checked (active), it is
disabled.

GETGENERALCONFIG

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

150

GETPROFILEDATA (Section, KeyName, INIFile)

The GETPROFILEDATA function retrieves text associated with an entry in an initialization file.

Arguments

Section

The Section argument is a string variable that specifies the section name within an initializa-
tion file from which DCS gathers text. In an initialization file, square brackets ([]) surround
section names.

KeyName

The KeyName argument is a string variable that specifies the entry in the section specified by
the Section argument from which to collect text. Text is collected from an entry if the entry
contains the text in the KeyName argument on the left side of the equal sign in the entry.

INIFile

The INIFile argument is a string variable that specifies the name of the initialization file from
which DCS collects text.

Result

If text in the initialization file is found that matches the text contained in the KeyName argu-
ment, the result is a string composed of the text on the right side of an entry; otherwise, the
result is a null or empty string. If an error occurs, the result is a string containing the character
0 (zero).

Also see: PUTPROFILEDATA function

Comments

An empty or null string is usually denoted by a left and right quote with nothing between
the quotes. For example, after the following script line is executed the variable $Section
contains a null string:

$Section = “”

For moreinformation about the structure and contents of initialization files, refer to Microsoft
Windows documentation.

Example

In this example

$File = GETPROFILEDATA (“Child0”, “IconFile”, “app.ini”)

the function searches the app.ini initialization file. All entries in the section Child0 are
searched for the text “IconFile”. If an entry contains the search text to the left of the
equal sign, the variable $File contains the text to the right of the equal sign. If not found,
$File contains a null string.

GETPROFILEDATA

2 Functions

151

GETXFERCONFIG (KeyString, WinHandle)

The GETXFERCONFIG function returns a string identifying the current state of a file transfer proto-
col setting for the default session window.

Arguments

KeyString

The KeyString argument must be a key string recognized by the file transfer protocol. The
GETXFERCONFIG function returns a string representing the current state of that setting. For
example, GETXFERCONFIG(“BlockSize”) might return either the string “256” or the string
“Auto”.

See the XFERCONFIG command for a list of key strings.

WinHandle

The optional WinHandle argument is an integer identifying a particular child window of
DCS.

Result

The GETXFERCONFIG function returns a string identifying the current state of a file transfer
protocol setting for the session in the script’s default session window.

Note: In some instances DCS will return a 1 for TRUE and a 0 for FALSE. It is recom-
mended that the code check for both conditions (if $retval = TRUE or $retval =
“1 …) to avoid possible logic flow problems.

If ERROR is set to TRUE a null string is returned.

Comments

If WinHandle is not specified, DCS applies the file transfer protocol configuration settings to
the active session window.

The file transfer protocol settings for a session are specified on the File Transfers tab in the
Session Properties dialog, or with the XFERCONFIG command.

The ERROR function returns TRUE if either the KeyString or WinHandle argument is
invalid.

GETXFERCONFIG

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

152

Example

In this script:

$XFerBlock = GETXFERCONFIG (“BlockSize”)
If $XFerBlock <> “Auto”
%Block = Num ($XFerBlock)
Else Display (0,0) $XFerBlock

assuming the default session’s file transfer protocol is currently using a blocksize setting of 256,
the string “256” is assigned to $XFerBlock. The variable %Block is assigned the numeri-
cal value of the string, which in this case is the numerical value 256. If the string is “Auto”,
the string is shown in the active session window.

If the script does not have a default session window, a null string is returned.

GETXFERCONFIG, continued

2 Functions

153

HWNDLIST (NumWin)

The HWNDLIST function returns a string containing the window handles of all open child windows.

Arguments

NumWin

The optional NumWin argument is an integer expression specifying the number of window
handles to return, where the most recently activated window is specified by the integer one, the
two most recently activated windows are specified by the integer two, and so on.

Result

The result is a string composed of the handles of DCS child windows. The first handle is the
most recently activated window, followed by the next most recently activated, and so on. The
string is a hexadecimal representation of a Window handle and has the generalized form of
0x****, where an asterisk is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F). Each window’s handle, except for the last handle in the resulting string, is followed by a
comma.

A value of -1 (negative one) in the NumWin argument returns a string of all child window
handles. This is the default value.

A value of 0 (zero) in the NumWin argument returns a string of the application window
handle if a child window is open in DCS. If no child window is open, a value of zero returns a
null string.

Because the value returned is a string, you must use the NUM function to change the string to
a numeric representation if you wish to use the result as a numeric value with other functions
or commands.

Comments

If a child window is hidden by the WINDOW HIDE command, its handle is not available via
this function.

Example

In this example

$wins = HWNDLIST (-1)
DISPLAY $wins

the HWNDLIST function returns the window handles for all of the child windows of the DCS
application window.

When the display command is executed, DCS might display the string
0x3084,0x8D88,0x30D8 in the session window.

HWNDLIST

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

154

Example

In this example:

$AllWindows = HWNDLIST (-1)
%Comma = POS ($AllWindows, “,” 1)
%WinHnd = NUM (SUBSTR ($AllWindows, 1, (%Comma -1)))
Window Activate %WinHnd

the hexadecimal values of all windows are assigned to $AllWindows. The integer variable
%WinHnd is assigned a numeric value by changing a substring of $AllWindows into a nu-
meric value with the NUM function. This allows DCS to use %WinHnd as the window handle
for the WINDOW ACTIVATE command. Without the use of the NUM function, the string
retrieved by the HWNDLIST function cannot be used as a numeric value in another function
or command.

HWNDLIST, continued

2 Functions

155

ICONIC (WinHandle)

The ICONIC function indicates whether a child window or the DCS application window is mini-
mized.

Arguments

WinHandle

The optional WinHandle argument is a numeric expression specifying a particular window.
Use a WinHandle argument of zero (0) to specify the DCS application window.

Result

The result is a Boolean value, where TRUE indicates the window is minimized, and FALSE
indicates that the window is not minimized.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the current session window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

In this example:

%h = NUM (hwndlist (0)
IF ICONIC (%h)
WINDOW MAXIMIZE (%h)

%h contains the handle for the DCS application window. If DCS is running in a minimized
window, the ICONIC function evaluates to TRUE and the DCS application window is maxi-
mized.

ICONIC

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

156

INT (RealNum)

The INT function converts a real numeric value or expression to an integer value.

Arguments

RealNum

The RealNum argument contains the real numeric value or expression to be converted.

Result

The result is an integer value corresponding to the whole number portion of the RealNum
argument.

Comments

This function is most useful for converting a real value to an integer, although either an integer
or a real number may be specified. All decimal places in a real number are truncated, not
rounded.

Example

In this example:

%num = INT (23.6)

the numeric variable %num assumes the value 23.

In this example:

DISPLAY (0,0) STR (INT (10 / 3))

This command directs DCS to display the string representation of the integer returned by
the INT function. Since the result of the integer division is a real number (3.33333), the INT
function is used to convert it to an integer. The string 3 will be displayed in the active session
window.

INT

2 Functions

157

LENGTH (String)

The LENGTH function returns the number of characters in the specified string.

Arguments

String

The String argument specifies the string whose length is to be determined.

Result

The result is an integer value indicating the number of ASCII characters, including spaces, in
the specified string.

Comments

Since a string may have a maximum length of 254 characters, this function returns a maxi-
mum value of 254.

Example

In this example:

%len = LENGTH ($name)

if the string variable $name contains the string “TEXAS”, the numeric variable %len as-
sumes the value “5”.

If the string variable $name contains the string “HOUSTON, TEXAS”, the numeric variable
%len assumes the value “14”.

LENGTH

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

158

CHECKED (Popup, Item)

The (MENU) CHECKED function indicates whether the specified menu item is checked or unchecked.

Arguments

Popup

The Popup argument is an integer specifying a popup menu, where the application control
menu is specified by the integer 0 (zero) and the first popup menu is specified by the integer 1
(one).

Item

The Item argument is an integer specifying an item in the menu specified by the Popup
argument. The first item is specified by the integer 1 (one) and both items and separators are
counted. For example, the last item in a menu containing ten items and two separators is
specified by the integer “12”.

Result

The result is a Boolean value, where TRUE indicates that the item is checked and FALSE
indicates that the item is unchecked.

If either the Popup argument or Item argument is invalid, the ERROR function returns
TRUE.

Example

In this example:

IF CHECKED (2, 1)
MENU UPDATE 2 1 UNCHECKED
ELSE
MENU UPDATE 2 1 CHECKED

the (MENU) CHECKED function returns the state of the first item in the second menu. The
MENU UPDATE command toggles the state between checked and unchecked.

(MENU) CHECKED

2 Functions

159

ENABLED (Popup, Item)

The (MENU) ENABLED function indicates whether the specified menu item is enabled or disabled.

Arguments

Popup

The Popup argument is an integer specifying a popup menu, where the application control
menu is specified by the integer 0 (zero) and the first menu is specified by the integer 1 (one).

Item

The Item argument is an integer specifying an item in the menu specified by the Popup argu-
ment. The first item is specified by the integer one and both items and separators are counted.
For example, the last item in a menu containing ten items and two separators is specified by
the integer “12”.

Result

The result is a Boolean value, where TRUE indicates that the menu item is enabled and
FALSE indicates that the menu item is disabled.

If either the Popup argument or Item argument is invalid, the ERROR function returns
TRUE.

Example

In this example:

IF ENABLED (2, 2)
MENU UPDATE 2 2 GRAYED

the (MENU) ENABLED function returns the state of the second item in the second menu. If
the menu item is enabled (the (MENU) ENABLED function returns TRUE), the MENU UP-
DATE command disables the menu item.

In this example:

IF ENABLED(2,2)
MENU UPDATE 2 2 GRAYED
ELSE
MENU UPDATE 2 2 ENABLED

the ENABLED function returns the state of the second item in the second menu. The MENU
UPDATE command toggles the menu item between an enabled and disabled state.

(MENU) ENABLED

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

160

NETID ()

The NETID function returns the current value of the NetworkID system variable.

Result

The result is the current value of the NetworkID system variable. The string can contain alpha-
numeric characters.

Comments

Compare with the SET NETID command.

Example

In this example:

WHEN STRING “@”
SEND NETID ()

the result string of the NETID function is sent to the remote system when the string “@” is
received through the COM port of the computer.

In this example:

WAIT STRING “Network?”
BEGIN
SEND NETID()
END

the result string of the NETID function is sent to the remote system when the string “Net-
work?” is received through the COM port of the computer.

NETID

2 Functions

161

NEXT ()

The NEXT function retrieves the next file name from the most recent list of files established using the
ROUTE function.

Arguments

The NEXT function takes no arguments.

Result

The result is a string value containing the next file name in the current route.

Comments

If the route is empty or has not been defined, the ERROR function returns TRUE and the
result is a null string.

Example

See the ROUTE function.

NEXT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

162

NUM (String)

The NUM function returns the real numeric value of the specified string.

Arguments

String

The String argument contains the string to be converted to a numeric.

Result

The result is a real numeric value corresponding to the numeric value of the String argument.

Example

In this example:

!real = NUM (“111.89”)

the real numeric variable !real assumes the value “111.89”.

In this example:

%int = NUM (“123.67”)

the integer numeric variable %int assumes the numeric value “123”. Although the NUM
function returns a real numeric, in this example it is stored in an integer numeric and, there-
fore, the fractional portion of the value is truncated.

NUM

2 Functions

163

ORD (String)

The ORD function converts the characters specified in the string to an integer numeric value.

Arguments

String

The String argument specifies the string to be converted. If multiple characters are specified,
the ORD function returns the sum of the ordinal values of the characters.

Result

The result is an integer numeric value corresponding to the sum of the ASCII numeric equiva-
lents of the characters in the String argument.

Comments

For more information on character representations, see the appendix titled “Character Sets” in
the DCS 9 Online Reference.

Example

In this example:

%num = ORD (“A”)

the numeric variable %num assumes the value “65”.

In this example:

%num_sum = ORD (“ABC”)

the numeric variable %num_sum assumes the value “198”. It returns the same value as the
expression ORD (“A”) + ORD (“B”) + ORD (“C”); the sum of this expression is
“65+66+67”, or “198”.

ORD

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

164

PASSWORD ()

The PASSWORD function returns the current value of the Password system variable.

Note: This function does not apply to the IBM TN3270 emulation.

Result

The result is the current value of the Password system variable. The string may contain alpha-
numeric characters.

Comments

Also see: SET PASSWORD command

Example

In this example:

IF PASSWORD () = “secret”
DISPLAY “shhhh”

the string “shhhh” is displayed if the Password system variable is set to "secret".

PASSWORD

2 Functions

165

PHONENUMBER ()

The PHONENUMBER function returns the current value of the PhoneNumber system variable.

Result

The result is the current value of the PhoneNumber system variable. The string may contain
alphanumeric characters.

Comments

Also see: SET PHONENUMBER command

Example

In this example:

$oldNum = PHONENUMBER ()

the string variable $oldNum assumes the value of the PhoneNumber system variable.

PHONENUMBER

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

166

POS (String, Keyword, Start)

The POS function returns the position of the first character of a keyword within a specified string.

Arguments

String

The String argument specifies the string in which to search for the keyword.

Keyword

The Keyword argument is a string containing the characters for which to search.

Start

The optional Start argument is a numeric specifying the character position within the speci-
fied string (from 1 to n) at which to begin searching. If the Start argument is not included, the
search defaults to the first character in the string.

Result

The result is a numeric value indicating the position of the first character of the keyword
within the string. If the string does not contain the keyword, the result is the value zero.

Example

In this example:

%position = POS (“DYNACOMM”, “A”)

The numeric variable %position assumes the numeric value “4”.

POS

2 Functions

167

POSITION (WinHandle, Boolean)

The POSITION function returns a string containing the position and dimensions of the window speci-
fied by WinHandle.

Arguments

WinHandle

The WinHandle argument is a numeric expression specifying a particular window. The handle
of the DCS application window is specified by the handle zero.

Boolean

The optional Boolean argument causes the function to return the position of the window
frame when it evaluates to FALSE. When it evaluates to TRUE, the position of the window’s
client area is returned. The default state is FALSE.

Result

The result is a string value listing the coordinate position and dimensions of the specified
window, in the form:

x,y,w,h

where (x,y) are the coordinates of the top left corner of the specified window, (w) is the win-
dow’s width, and (h) is the window’s height.

Comments

If the WinHandle argument is not valid, the ERROR function returns TRUE and the result is
a null string.

Many of the WINDOW commands make use of window position coordinates.

Example

In this example

%winnum = NUM ($winstring)
$place = POSITION (%winnum)
DISPLAY $place | “^m”

$winstring is a window handle which has been parsed from a string returned by the
HWNDLIST function. The string, “$winString”, is converted to an integer and the
integer, %winnum, is used as the window handle argument in the POSITION function. The
resulting string is displayed with a carriage return. The string “$place” represents the posi-
tion of the window’s frame.

POSITION

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

168

POWER (Base, Exponent)

The POWER function raises the base to the specified power.

Arguments

Base

The Base argument is a numeric specifying the mathematical base.

Exponent

The Exponent argument is a numeric specifying the power to which the base will be raised.

Result

The result is a real numeric value corresponding to the Base raised to the Exponent.

Example

In this example:

%num = POWER (3, 2)

the numeric variable %num assumes the value 9.

In this example:

!sqrt = POWER (%num, .5)

the real numeric variable !sqrt assumes the value equal to the square root of %num.

POWER

2 Functions

169

PRTMETRICS ()

The PRTMETRICS function returns the current print parameters.

Arguments

The PRTMETRICS function takes no arguments.

Result

The result is a string value in the following format:

Columns,Lines;Font,PointSize

Comments

If a print channel is open, PRTMETRICS returns the current print parameters (see the PRINT
OPEN command).

If no print channel is open, PRTMETRICS returns a null string.

Example

In this example:

$prt = PRTMETRICS ()

if the print parameters include a page size of 80 columns and 66 lines, with a 12 point Courier
printer font, $prt assumes the string value “80,66,Courier,12”.

PRTMETRICS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

170

PUTPROFILEDATA (Section, KeyName, Data, File)

The PUTPROFILEDATA function creates a new entry or changes an existing entry within an initializa-
tion file and returns a string value to indicate whether this succeeded.

Arguments

Section

The Section argument is a string variable containing the section name within an initialization
file to which DCS writes text. In an initialization file, square brackets ([]) surround a sec-
tion name.

KeyName

The KeyName argument is a string variable specifying which entry in the section indicated by
the Section argument to change or create. DCS changes an entry if an entry contains the text
in the KeyName argument on the left side of the equal sign in the entry. If DCS cannot find
the text from the KeyName argument in an entry, DCS will create a new entry.

Data

The Data argument is a string variable specifying the text for an entry. The contents of the
Data argument appears to the right of the equal sign in an entry. When DCS creates an entry,
the entry will have the following format:

KeyName = Data

File

The File argument is a string variable specifying the name of the initialization file in which
DCS will create or change text.

Result

If DCS was able to change or create text in the initialization file, the result is a string contain-
ing the character 1. If an error occurs, the result is a string containing the character 0 (zero).
One possible error might be a file error (such as Disk Full), which could occur when DCS tries
to close the initialization file.

Also see: GETPROFILEDATA function

PUTPROFILEDATA

2 Functions

171

Comments

An empty or null string is usually denoted by left and right quotation marks with nothing be-
tween them. For example, after the following script line is executed, the variable $Section
will contain a null string:

$Section = “”

Example

This script example:

$Status = PUTPROFILEDATA (“Child0”, “Magic_Number”, “42”,
“”)

searches the default application initialization file for the text “Magic_Number” in the
section Child0. If the text is found, the characters “42” are written on the right side of the
equal sign of the entry. If the text is not found, an entry similar to the following is created:

Magic_Number=42

The function returns a string which is placed in $Status. If the operation was successful, the
variable $Status contains the character “1” (one). If the initialization file is not changed,
$Status contains the character “0” (zero).

PUTPROFILEDATA, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

172

RANDOM (Range)

The RANDOM function returns a random number from 0 (zero) to (Range -1), inclusive.

Arguments

Range

The Range argument is an integer specifying the upper limit of the range from which the
random number is generated.

Result

The result is an integer value.

Example

In this example:

%number = RANDOM (50) + 1

the numeric variable %number assumes a random value from 1 - 50, inclusive.

RANDOM

2 Functions

173

REAL (Numeric)

The REAL function returns a real value corresponding to the specified numeric.

Arguments

Numeric

The Numeric argument specifies the numeric value to be converted.

Result

The result is a real numeric value corresponding to the specified numeric value.

Comments

This function is most useful for converting an integer value to a real value, although either an
integer or a real value may be specified.

Example

In this example:

!num = REAL (10)
DISPLAY (0,0) STR (!num, 4)

These commands direct DCS to display the string “10.0000” in the session window.

REAL

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

174

RESULT ()

The RESULT function returns the contents of the Result system variable.

Arguments:

The RESULT function takes no arguments.

Result

The result is a string value corresponding to the contents of the Result system variable.

Comments

The contents of the Result system variable may be modified by several methods. The SET
RESULT command may be used to assign a value to the Result system variable. Throughout
the command reference, you will also see notations of commands, such as TABLE COPY, that
assign a value to the Result system variable. If a task error occurs, the Result system variable is
assigned a value equivalent to the error message.

Also see: SET RESULT command
ERROR function

Example

This set of commands:

TABLE COPY 0 TO 1 INCLUDE “a”
IF NUM (RESULT ()) > 0
DISPLAY “More records”

instructs DCS to copy to table one the records from table zero that begin with the character
a. The TABLE COPY command assigns the number of copied records to the Result system
variable.

RESULT

2 Functions

175

ROUND (Real, Places, Boolean)

The ROUND function rounds the decimal places in the specified real numeric.

Arguments:

Real

The Real argument is a real numeric specifying the number to be rounded.

Places

The optional Places argument is a numeric specifying the number of decimal places to which
to round the real numeric. If the Places argument is not included, DCS rounds the real nu-
meric to the number of decimal places specified in the most recently executed SET DECIMAL
command. If no SET DECIMAL command has been executed, the default value of the Places
argument is zero.

Boolean

The optional Boolean argument specifies whether to round or truncate the specified real
numeric. If Boolean evaluates to TRUE, the numeric is rounded. If Boolean evaluates to
FALSE, the numeric is truncated. If not included, the default value of the Boolean argument
is TRUE.

Result

The result is a real numeric value rounded to the specified decimal place.

Comments

For decimal values of 0, 1, 2, 3, and 4, the numeric is rounded down. For decimal values of 5,
6, 7, 8, and 9, the numeric is rounded up.

Example

In this example:

!pi = ROUND (3.141592654, 2, TRUE)

a copy of the REAL argument in the ROUND function is rounded down to the second decimal
place, and the variable !pi assumes the value “3.14”.

ROUND

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

176

ROUTE (FileSpec, ATTRIBUTES Type)

The ROUTE function creates a list of files which match the file specification.

Arguments

FileSpec

The FileSpec argument is a string specifying the type of files to include in the route.

FileSpec argument syntax:

FileSpec = drive:\path...\FileName.extension

A FileSpec argument must contain at least one of the parts shown above, and can contain the
wildcard characters (?) and (*). The (?) wildcard indicates that any single character can occupy
that string position. The (*) wildcard indicates that zero or more characters can occupy that
string position.

ATTRIBUTES Type

The optional ATTRIBUTES clause indicates which files to include in the route. The Type
argument is a numeric specifying the file attributes (see also the ATTRIBUTES function).

Value File Attribute Standard File

1 Read-Only File yes

2 Hidden File no

4 System File no

16 Subdirectory no

32 Archived File yes

64 Compressed File yes

To specify multiple attributes, use the sum of all of the attribute values as the Type argument.

If the ATTRIBUTES clause is not included, or is zero, only standard files will be included in
the resulting route. Otherwise, only those files whose attributes have been specified will be
included in the route.

Note: This differs from previous versions of DCS, in which standard files were also
included whether or not their attributes were specified. If you are using a script
written under DCS Asynchronous, DCS/Elite or a DCS OpenConnect product,
you will need to add the values of the standard files to any Type arguments in the
script.

Result

The result is a string value specifying the first file name in the argument FileSpec with the
attributes described in the ATTRIBUTES clause. Succeeding files may be found with the NEXT
function.

ROUTE

2 Functions

177

Comments

If no files match, the ERROR function returns TRUE and the result is a null string.

Also see: NEXT function

Example

This set of commands:

$pathname = “C:\”
$nextfile = ROUTE($pathname | ‘*.*’, 127)
$nextfile = NEXT()

While ($nextfile != “”)
BEGIN
display “^M” | “ =>”
display $nextfile
$nextfile = NEXT()

END

establishes a route through all the directories and files in the root directory (the sum 127 is
the Type argument and includes the values of all standard files), and displays their names. The
WHILE loop is designed to continue displaying the next file until the route is empty.

ROUTE, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

178

SCREEN (Row, Column, Length, WinHandle)

The SCREEN function retrieves a line or portion of a line of data at the specified position in a session
window.

Arguments

Row

The Row argument is an integer specifying the row number of the desired data. The first row is
considered row zero.

For those emulations which display data in a status line, the data can be captured from the top
and bottom status lines by using the following integers in the Row argument:

Status Line Integer

Top -1

Bottom -2

Column

The optional Column argument is an integer specifying the column number of the desired
data. The first column is considered column zero. If the Column argument is not included, a
default column offset of zero is assumed.

Length

The optional Length argument is a numeric specifying the length (in characters) of the desired
data. If the Length argument is not included, or if Length exceeds the length of the line, the
remainder of the line is collected.

If you use the Length argument, you must also include the Column argument. If you do not
include the Column argument, the script will compile, but the SCREEN function may not
perform as expected.

SCREEN (1, 3, 5, 0x4BD3)(Row, Column, Length, & WinHandle arguments)

or

SCREEN (1, 3) (Row & Column arguments only)

but not

SCREEN (1, , 5) (incorrect usage)

WinHandle

The optional WinHandle argument is an integer specifying a particular window in DCS. The
inclusion of this argument allows a script in DCS to retrieve a string from a particular session
window of DCS.

SCREEN

2 Functions

179

Result

The result is a string value containing the window data within the specified area.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle of
the active session window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Examples

In this example:

$line = SCREEN (0)

the string variable $line assumes the string value of the first line of data on the screen.

In this example:

$chars = SCREEN (1, 3, 7)

the string variable $chars assumes the string value of seven characters of screen data, starting
at the second row and fourth column.

SCREEN, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

180

SEARCH (Row, Column, Length, String, WinHandle)

The SEARCH function returns the absolute position of the first character of the specified string in the
specified session window.

Caution! This function is case sensitive.

Arguments

Row

The optional Row argument is an integer specifying the row offset for the starting position
from which the search is performed. The first row is considered row 0 (zero). If the Row argu-
ment is not included, the first row will be the starting row of the search.

Column

The optional Column argument is an integer specifying the column offset for the starting po-
sition. The first column is column 0 (zero). If the Column argument is not included, the first
column will be the starting column of the search.

If you use the Column argument, you must also include the Row argument.

Length

The optional Length argument is an integer specifying the number of characters in the
window to be included in the search. If the Length argument is not included, all remaining
characters in the window are examined.

If you use the Length argument, you must also include the Row and Column arguments.
If they are not included, the script compiles, but the SEARCH function may not perform as
expected.

SEARCH (“Texas”)
(String argument only)

or

SEARCH (1, 3, 5, “Texas”, 0x3AFF)
(Row, Column, Length, String, & WinHandle arguments)

or

SEARCH (1, 3, “Texas”)
(Row, Column, & String arguments only)

but not

SEARCH (1, , 5, “Texas”)
(incorrect usage)

SEARCH

2 Functions

181

String

The String argument specifies the string value for a case-sensitive search.

WinHandle

The optional WinHandle argument is an integer identifying a particular window in DCS. The
inclusion of this argument allows a script in DCS to search a particular window.

Result

The result is an integer value that is calculated using the following formula:

(row * column width) + column

The first row is row zero and the first column is column zero. If the string is not found, the
result is -1.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active session window.

The SEARCH function does not search the status line.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

In this example:

%position = SEARCH (0, 0, “USER ID:”)

if the string USER ID: begins on the second line (row one) at the fifth column (column
four), and the column width is 80, %Position assumes the value “84”. This value is derived
using the formula above as follows: (1 * 80) + 4 = 84.

SEARCH, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

182

SEARCHINRECT

SEARCHINRECT (TopRow, BottomRow, LeftCol, RightCol, String, WinHandle)

The SEARCHINRECT function searches for a specified string within a specified rectangular screen
area. It then returns the position of the first character of the string.

Arguments

TopRow, BottomRow, LeftCol, RightCol

The TopRow, BottomRow, LeftCol, and RightCol arguments are integers that define a region
of the session screen, where 0,0 is the upper left character position of the screen, and where
the lower right character position of the screen is specified by the maximum number of rows
and columns for the emulation (MaxRowsInEmulation, MaxColsInEmulation). If you supply
a TopRow argument or a LeftCol argument that is less than zero, the function will use zero as
the value of the argument. Similarly, if a BottomRow argument is greater than MaxRowsInE-
mulation, the function will use MaxRowsInEmulation as the value of the argument, and if the
RightCol argument is greater than MaxColsInEmulation, the function will use MaxColsInE-
mulation as the value of the argument.

String

The String argument is the specified string for which DCS is to search.

WinHandle

The optional WinHandle argument is an integer identifying a particular window in DCS. The
inclusion of this argument allows a script in DCS to search a particular window.

Result

When the function finds the whole string in the defined area, the function returns the position
of the first character. The position is calculated using the following formula:

(row * column width) + column

The first row is row zero and the first column is column zero. If the string is not in the area
defined by the function (or if the string is only partially in the area), the function returns -1
(negative one).

Example

In this example:

SEARCHINRECT (10,15,40,80,”User ID:”)

a rectangular screen area is searched beginning at row 10, column 40, and ending at row 15,
column 80. If the first character of the string User ID: is in the twelfth line (row 11) at the
sixtieth column (column 59) of the session screen, and if the terminal emulation has a column
width of 132, the function returns 1511, or mathematically, (11 * 132) + 59.

2 Functions

183

SECONDS (Time, Date)

The SECONDS function returns the number of seconds between January 1, 1904 and the
time and date indicated by the Time and Date arguments.

Arguments

Time

The optional Time argument is a string specifying the time to which the function should
calculate the number of seconds. The Time argument must be in the time format indicated by
your Windows initialization file or registry. The TIME function also provides the time in the
proper format.

If you do not include the Time argument, DCS will use 00:00:00 AM (midnight).

Date

The optional Date argument is a string specifying the date to which the function should calcu-
late the number of seconds. The Date argument must be in the date format specified in your
Windows initialization file or registry. The DATE function also provides the date in the proper
format.

If you do not include the Date argument, DCS uses January 1, 1904. If you include the Date
argument, you must include the Time argument.

Result

The result is an integer representing number of seconds elapsed from 12:00:00 AM, Janu-
ary 1, 1904 to the specified time and date. The result may be a large integer, and due to the
sign extension, it may display as a negative number. The result of the function is best used in
comparisons or as an argument for the DATE and TIME functions.

Example

In this example:

$tomorrow = DATE (SECONDS (TIME(),DATE ()) + 3600 * 24)

The string variable $tomorrow assumes the string value of the date, exactly 24 hours from
when the script line executes. The innermost DATE function returns the current date. The
SECONDS function then converts this date to seconds. The number of seconds from the
SECONDS function is added to the number of seconds in one day. Finally, the DATE function
transforms the summation of seconds to the date of the next and assigns the result to $to-
morrow.

This command:

IF SECONDS (DATE ()) >= SECONDS ($target_date)
PERFORM update

compares the current date with the target date specified by $target_date and then
branches execution accordingly.

SECONDS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

184

SETTINGS (Keyword, WinHandle)

The SETTINGS function returns values of the currently selected session properties.

Arguments

Keyword

The Keyword argument must be one of the keywords below.

Keyword Description

BACKSPACEKEY For use only with the VT Series emulation.

 Returns either TRUE or FALSE, indicating whether the

[BACKSPACE] key is configured to operate as Delete

(FALSE) or Backspace (TRUE).

 Default setting: Delete (FALSE)

BAUDRATE Returns the current setting for the baud rate as a numeric

string.

BINARYTRANSFERPARAMS Returns a string. The syntax of the string depends on which

binary transfer protocol you have selected.

 KERMIT

 If the current protocol is Kermit, the ERROR string is re-

turned. Parameters for this protocol cannot be obtained by

this function.

SETTINGS

2 Functions

185

BINARYTRANSFERPARAMS, continued

 ZModem

 If the current protocol is ZModem, a string is returned where

each string element refers to a ZModem Settings dialog

control. To display this dialog, open DCS and select File

> Session >Properties > File Transfers tab > ZModem.

Figure 2.1 shows an example of this dialog.

SETTINGS, continued

Figure 2.1
General ZMo-
dem settings

Keyword Description

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

186

BINARYTRANSFERPARAMS, continued

 ZModem, continued

 Returned String:

 ZMODEM; PACKETSIZE Packet; TIMING Timing; ERRORCHECK Error;

RETRIES Max MAX Cons CONS; YIELD Yield; Exist EXISTING; AUTO-

START Enabled

 Where:

String Word Description

Packet Represents size of transfer packet.

 Valid values: 1K, 512, 256, 128, AUTO

Timing Represents time-out option.

 Valid values: STANDARD, TIGHT, LOOSE

Error Represents the ERROR checking method.

 Valid vaues: AUTO, CRC32, CRC16

Max Represents the maximum number of retries to allow.

 Valid values: Numeric character string

Cons Indicates the maximum number of consecutive retries to

allow.

 Valid values: Numeric character string

Yield Represents the number of packet to send before yield-

ing to other Windows processes.

 Valid values: Numeric character string

 The higher the numeric value, the longer DCS controls

Windows’ resources.

Exist Represents the action to take when the file name to

transfer matches a file name on the receiving system.

 Valid values: RESUME, PROMPT, OVERWRITE, SKIP,

RENAME

Enabled Indicates to/not to automatically transfer files when a

sending system initiates a transfer.

 Valid values: ENABLED, DISABLED

SETTINGS, continued

Keyword Description

2 Functions

187

SETTINGS, continued

Keyword Description

BINARYTRANSFERPARAMS, continued

XModem or YModem

If the current protocol is XModem or YModem, a string is

returned where each string element refers to a XYModem

Settings dialog control. To see this dialog, select File > Ses-

sion > Properties > File Transfers tab > XYModem.

Figure 2.2
General XYMo-
dem settings

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

188

Keyword Description

BINARYTRANSFERPARAMS, continued

 XMODEM or YMODEM, continued

 Returned string:

 Option; PACKETSIZE Packet; TIMING Timing; ERRORCHECK Error; RE-

TRIES Max MAX Cons CONS; YIELD Yield; Size

 Where:

String Word Description

Option Specifies the XModem or YModem protocol option.

 Valid values: XMODEM, YMODEM, YMODEM251,

YMODEM-G

Packet Specifies the size of the transfer packet.

 Valid values: 1K, 128, AUTO

Timing Specifies the time-out option.

 Valid values: STANDARD, TIGHT, LOOSE

Error Specifies the ERROR checking method.

 Valid values: CRC or CHECKSUM

Max Specifies the maximum number of retries to allow.

 Valid values: Numeric character string

Cons Specifies the maximum number of consecutive retries

to allow.

 Valid values: Numeric character string

Yield Specifies the number of packets to send before it yield-

ing to other Windows’ processes.

 Valid values: Numeric character string

 The higher the numeric value, the longer DCS controls

Windows’ resources.

Size Specifies to/not to pad the last file packet.

 Valid values:

 KEEPSIZE (maintain the size of the original file)

NOKEEPSIZE (pad the last packet of the file with null

characters)

SETTINGS, continued

2 Functions

189

Keyword Description

BINARYTRANSFERS Depending on the current file transfer protocol selected, returns:

IND$file*, IXF*, Kermit, XModem, YModem Batch, or ZModem. (*only

available with a client option)

BUFFERLINES Returns the number of buffer lines as a string.

COLUMNS Returns the column width of the current emulation (80, 132, or 180,

for example).

CONNECTOR Returns NONE, COM1, COM2, COM3, COM4; COM5, COM6,

COM7, COM8, or COM9; COMBIOS port extension (where the op-

tional extension can be null, or ETHERTERM); UBNETCI port (where

port is either 1 or 2); DEVICE name (where name is the name of a

device to use).

DATABITS Returns either 4, 5, 6, 7, or 8, depending on the current value of data

bits in the communications parameters.

EMULATE Depending on the current emulation, returns one of the following

values: ADDSVP60, ANSI, ATT605, ATT705, ATT4425*, IBM3270*,

IBM3287*, IBM5250*, SCOANSI, TN6530-8*, TTY, Tvi925, Tvi950,

VT52, VT100, VT101, VT102, VT220, VT320, VT420, Wyse60. (* only

available as a client option)

FLOWCONTROL Returns either XONXOFF, HARDWARE, or NONE, depending on the

current settings of the communications parameters.

PARITY Returns either NONE, ODD, EVEN, MARK, or SPACE, depending on

the current value of parity in the communication parameters.

PHONENUMBER Returns the current phone number used by the DIAL command. The

string can contain alphanumeric characters.

RETRYDELAY Returns the current retry delay in units of seconds.

SELECTION Returns the line numbers selected in a session window by the SE-

LECTION command.

SENDDELAY Returns the current send delay units (measured in sixtieths of a

second).

STOPBITS Returns either 1, 1.5, or 2, depending on the current value of stop

bits in the Direct Serial parameters.

TERMFONT Returns the current font and size of the session window in the form:

fontname;fontsize.

WORDSWRAP Returns the current column to which text is wrapped for LOGTOFILE.

A value of 0 indicates that no wrapping is performed.

SETTINGS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

190

Keyword Description

The following keywords return a string value, where 1 is said to be TRUE and 0 is said to be

FALSE.

CARRIERDETECT Returns 1 if carrier detect is enabled, otherwise it returns 0.

FKEYSSHOW Returns 1 if the function keys are visible, otherwise it returns 0.

LINEWRAP Returns 1 if incoming lines are wrapped past the end of the setting

for columns, otherwise it returns 0.

LOCALECHO Returns 1 if local echo of outgoing characters is enabled, otherwise it

returns 0.

OUTGOINGCR Returns 1 if line feeds are added to outgoing carriage returns, other-

wise it returns 0.

PASSTHROUGH Returns a string value, where 1 represents TRUE (if your printer

driver supports Raw Passthrough Mode, and it is enabled), and

where 0 represents FALSE (if it is not enabled).

RETRY Returns 1 if retry is enabled, otherwise it returns 0.

SOUND Returns 1 if sound is enabled, otherwise it returns 0.

WinHandle

The optional WinHandle argument is an integer and identifies a particular window in DCS.

Result

The result is a string value, depending on the particular keyword argument, as described in the
keyword list above.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active session window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

SETTINGS, continued

2 Functions

191

Example

In this example:

DISPLAY SETTINGS (PASSTHROUGH)

the value displayed in the session window is 1(one) if Raw Passthrough Mode is enabled, or 0
(zero) if not enabled.

In this example:

DISPLAY SETTINGS (BINARYTRANSFERPARAMS)

the session window displays text that describes the parameters set for the current file transfer
protocol. If the current protocol is ZModem, a string similar to the following is displayed in
the session window:

ZMODEM; PACKETSIZE 1K; TIMING LOOSE;
ERRORCHECK AUTO; SKIP EXISTING; AUTOSTART ENABLED

SETTINGS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

192

STR (Numeric, Precision)

The STR function returns the string value of the specified numeric.

Arguments

Numeric

The Numeric argument specifies the numeric to be converted.

Precision

The optional Precision argument indicates the number of decimal places to be included in
the string representation of the Numeric argument. It overrides the current format specified
by the SET DECIMAL command. If the Precision argument is not included, the default
precision is that specified by the SET DECIMAL command. If no SET DECIMAL has been
specified, the default is zero.

Result

The result is the string value representation of the Numeric argument.

Comments

The Precision argument can also be a string using any valid C language format string.

Example

This command

DISPLAY (0,0) STR (12345,6)

 directs DCS to display the string 12345.000000 in the session window.

!measurement=ROUND(25.2314325,3)
DISPLAY (0,1) STR (!measurement,3)

The ROUND function returns the value 25.231, but to display this real number a string must
be provided to the DISPLAY command. Therefore, the STR function is used with the optional
Precision argument to accurately display the rounded measurement to three decimal places.
Note that the Precision argument matches that used with the ROUND function

If the optional Precision argument had not been specified, and if no SET DECIMAL had
been specified, the number of decimal places to be included in the string would have been 0
(zero) and DCS would only display the string 25 in the session window.

In this example:

DISPLAY (0,2) STR (DISKSPACE ())

the STR function returns the string value of DISKSPACE which is displayed in the session
window.

STR

2 Functions

193

SUBSTR (String, Start, Length)

The SUBSTR function returns a portion of the specified string.

Arguments

String

The String argument specifies a string from which the substring is obtained.

Start

The Start argument is an integer specifying the position of the character with which to begin
the substring.

Length

The optional Length argument is an integer specifying the desired length of the substring. If
the Length argument is not included, the substring contains all characters from the start posi-
tion to the end of the string.

Result

The result is the string value corresponding to the specified portion of the String argument.

Example

In this example:

$sub = SUBSTR (“abcdefg”, 2, 3)

the string variable $sub assumes the string value “bcd”.

In this argument:

$sub = SUBSTR (“abcdefg”, 3)

the string variable $sub assumes the string value “cdefg”.

SUBSTR

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

194

SYSMETRICS ()

The SYSMETRICS function returns the current system parameters.

Arguments

The SYSMETRICS function takes no arguments.

Result

The result is a string value in the following format:

HorizontalDisplayResolution,VerticalDisplayResolution;

TotalDiskSpace,FreeDiskSpace;PercentMemoryInUse,GlobalFreeMemory,

LocalFreeMemory,[WindowsMajorVersion][ProductCode]

Comments

The [ProductCode] is DCSeries.

Example

In this example:

$res = SYSMETRICS ()

returns the result:

1024,768;
1275559936,84672512;
100,32985088,372736;[WIN95][DCSeries]

that shows:

the display resolution is 1024 by 768;

the default hard drive has about 1.3GB of disk space;

the default hard drive has about 85MB of free disk space;

memory is 100% in use, the global memory has about 32MB free;

the local memory has about 372K free;

the current version of Windows is Windows 95;

and the product code is Dyna32.

SYSMETRICS

2 Functions

195

SYSTEM (SysNum P1, P2)

The SYSTEM function returns a string describing information about operating system-level param-
eters and environment variables.

Note: This function does not apply to the IBM TN3270 emulation.

Arguments

SysNum

The SysNum argument is specified by a hexadecimal value from the table below.

P1, P2, …

The optional Pn arguments are specified by one or more integers or strings. See each entry in
the table under Example below for specific parameters and syntax.

Result

The result is always a string.

Comments

The parameters listed in this electronic document are always the most up-to-date. However,
please note that the parameters for this function are not universal between versions of DCS
and are subject to change without notice.

Also see: SYSTEM command

Example

See each entry in the table for an example of syntax.

SysNum Definition

0x0001 The function returns the file name of the currently executing script.

 In the following example, the $current_task variable will contain the name of the

executing script.

 $current_task = SYSTEM (0x0001)

0x0950 This function returns the fully qualified path name of this script, without the file

name.

 In the following example, the $scriptpath variable will contain the path of the

currently executing script.

 $scriptpath = SYSTEM (0x0950)

0x0951 This function returns the command line of the executing application. In the fol-

lowing example, the $exepath variable contains the path of the executable.

 $exepath = SYSTEM (0x0951)

0x8000 This function creates two temporary zero-length files and returns a string con-

taining the file names separated by a comma.

SYSTEM

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

196

SYSTEM, continued

In the following example, the temporary file names are parsed from the result of this function
and used in a dialog routine.

$return = system(0x8000)
parse $return $tmp1 ‘,’ $tmp2

dialog(,,250,100) “SYSTEM(0x8000)”
edittext(10,10,200,14) “Return Value”
$return
edittext(10,30,200,14) “Filename 1 “ $tmp1
edittext(10,50,200,14) “Filename 2 “ $tmp2
button (105,80,40,14) default “OK” resume

dialog end
wait resume
file delete $tmp1
file delete $tmp2
cancel

2 Functions

197

TASKFILE (taskID)

Returns a string containing the path/filename of the given taskID.

Arguments

taskID

The taskID argument is an integer expression specifying teh script number.

Result

A string containing the path/filename.

Comments

Use the menu option Script: Status... to see a list of running scripts.

See also the SPAWN command.

See also the TASKSTOP command.

See also the TASKLIST function.

See also the TASKNAME function.

Example:

$whoIam = TASKLIST(-1)

DIALOG

 MESSAGE $whoIam

 MESSAGE TASKFILE(NUM($whoIam))

 BUTTON "OK" RESUME

DIALOG END

WAIT RESUME

Displays the path/filename of the running script.

TASKFILE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

198

TASKLIST (-1)

The TASKLIST function returns a list of all running scripts.

Arguments

NumFlag

The optional NumFlag of -1 returns only the taskID of the current script. If no parameter is
given, a list of all running taskID numbers is returned.

Result

The result is a string composed of the taskID of all running scripts. The string is a hexadecimal
representation of each script and has the generalized form of 0x****, where an asterisk is a
character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Each number, except for
the last handle in the resulting string, will be followed by a comma.

Because the value returned is a string, you must use the NUM function to change the string to
a numeric representation if you wish to use the result as a numeric value with other functions
or commands.

Comments

Use the menu option Script: Status... to see a list of running scripts.

See also the SPAWN command.

See also the TASKSTOP command.

See also the TASKFILE function.

See also the TASKNAME function.

Example:

SPAWN "Script2"
$whoIam = TASKLIST(-1)
$allScripts = TASKLIST()
DIALOG "Script1"
 MESSAGE $whoIam
 MESSAGE $allScripts
 BUTTON "OK" RESUME
DIALOG END
WAIT RESUME
This runs another script (Script2) and then displays the list of running scripts. For example:
0x17FC,0x030C and 0x17FC
DIALOG (5,5) "Script2"
 BUTTON "OK" RESUME
DIALOG END
WAIT RESUME

Example Script2.dcp to test Script1

TASKLIST

2 Functions

199

TASKNAME (taskID)

Returns a string containing the path/filename of the given taskID.

Arguments

taskID

The taskID argument is an integer expression specifying the script number.

Result

A string containing the path/filename.

Comments

Use the menu option Script: Status... to see a list of running scripts.

See also the SPAWN command.

See also the TASKSTOP command.

See also the TASKFILE function.

See also the TASKLIST function.

Example:

$whoIam = TASKLIST(-1)
DIALOG
 MESSAGE $whoIam
 MESSAGE TASKNAME(NUM($whoIam))
 BUTTON "OK" RESUME
DIALOG END

WAIT RESUME

Displays the filename of the running script.

TASKNAME

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

200

TIME (Seconds)

The TIME function returns the time, formatted according to the time format you have chosen via the
Windows Control Panel.

Arguments

Seconds

The optional Seconds argument is an integer specifying a number of seconds, where zero is
midnight, January 1, 1904 (see the SECONDS function). If you have not included the Sec-
onds argument, DCS returns the current system time.

Result

The result is a string containing the time in the format specified by the time format chosen via
the Windows Control Panel. For example, the time might have the following format:

Hour:Minutes:Seconds

Example

$time = TIME ()

If the system time is 13:45:18, $time assumes the string value 1:45:18 PM.

TIME

2 Functions

201

TIMER (Index)

The TIMER function returns the elapsed time since the last timer reset. DCS has access to four internal
timers (accessible only through a script).

Arguments

Index

The optional Index argument is a numeric (from zero to three) specifying the desired timer.
All internal timers are initialized to the value zero (0).

Result

The result is a string in the following format:

Hours:Minutes:Seconds

Comments

If the Index argument has a value greater than 3, the TIMER function uses the system timer.

Example

$interval = TIMER (2)

If 11 hours, 22 minutes and 33 seconds have elapsed since the last reset of timer two,
$interval assumes the string value 11:22:33.

TIMER

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

202

TRIM (String, Pre, Post)

The TRIM function removes characters from the specified string.

Arguments

String

The String argument specifies the string to be trimmed.

Pre

The optional Pre argument is a case-sensitive string specifying characters to discard from the
front of the String argument. This argument specifies a character sequence, not individual
characters. If you do not include the Pre argument, a null string is used as the default value of
the Pre argument and nothing is trimmed from the front of the String argument.

Post

The optional Post argument is a case-sensitive string specifying characters to discard from
the end of the String argument. This argument specifies a character sequence, not individual
characters. If you do not include the Post argument, the space character is used as the default
value of the Post argument and spaces are trimmed from the end of the String argument.

Result

The result is a string value corresponding to the String argument with the specified Pre and
Post character sequences removed.

Example

In this example:

$Str = TRIM (“ Houston, Texas “)

the string “ Houston, Texas ” has one space before and five spaces after it. Since
neither the Pre or Post arguments are supplied to the command, the TRIM function will
remove the five trailing spaces and put the leading space and the string Houston,Texas in
the string variable $Str.

In this example:

$newstring = TRIM (“ABCXXXXYZ”, “ABC” “XYZ”)

the variable $newstring assumes the string value XXX. However if the original string con-
tained a lowercase “a” and a lowercase “y”, $newstring contains the original string (since
the Pre and Post argument strings contain only uppercase characters).

TRIM

2 Functions

203

TYPEDLIBRARYCALL (LibName, ProcName, TypeString, Param1, Param2, ...,
Paramn)

The TYPEDLIBRARYCALL function returns a string representing the return value from a Dynamic
Link Library (DLL) function call. This function may be used to call functions from the Windows API,
or from other DLLs. Note that while most DLLs have the file name extension DLL, some of the DLLs
that provide the Windows API have the file name extension EXE. Refer to the Windows Software De-
velopment Kit (SDK) for more information on the use and development of Dynamic Link Libraries.

Note: The calling convention of the library function being used is determined by the routine
name. If the name has an underscore as the first character (“_”), the C programming
language convention is used. Otherwise, the function will be called using the standard
Windows API (WINAPI) convention (sometimes referred to as the Pascal convention).
It is very important that the calling convention be correct or unpredictable results will
occur, i.e., the application may crash.

Arguments

LibName

The LibName argument is a string specifying the complete path name to the library.

ProcName

The ProcName argument is a string specifying the name of a function or procedure in the
library.

TypeString

The TypeString argument is a string listing the type of the value that the library function
returns and the types of any parameters that the library function requires. The TypeString
must match the DLL function’s return value and parameters, in order, or the call may fail. The
TypeString argument has the following general format:

ProcRetType=ParamType1, ParamType2, ..., ParamTypen

The only element of the string that is required in all cases is ProcRetType. If the DLL function
uses any parameters, then you must add an equal sign to the string followed by the types of the
parameters. Separate the parameters with a comma. The types that you may specify are any of
the standard Windows SDK API types (BOOL, BYTE, DWORD, LONG, LPBYTE, LPD-
WORD, LPINT, LPLONG, LPSTR, LPWORD, UINT, VOID, and WORD) as described in
WINDOWS.H, and C language types (char and int). All of these types can specify the type of
a return value, and all except VOID can specify the type of a parameter for a library function.
See the Windows SDK for more information about these types.

Param1, Param2, ..., Paramn

The Param1, Param2, ...,Paramn arguments will be type cast according to the TypeString ,
and then used as the parameters to the DLL function call. These parameters have a one-to-one
correspondence to the ParamType part of the TypeString argument. Also, the parameters are
separated by commas.

TYPEDLIBRARYCALL

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

204

Result

The TYPEDLIBRARYCALL function returns a string representing the return value from a
Dynamic Link Library (DLL) function call.

Examples

$Result = TypedLibraryCall (“user32.dll”, “MessageBeep, \
“Bool=UINT, 0)

This example calls the Windows API function MessageBeep, which is in USER32.dll.

%Length = Num (TypedLibraryCall (“user32.dll”, “_ws-
printf”, \
 “int=LPSTR, LPSTR, LONG”, $Output, “the value is
%ld”, %value))

This example uses the ‘C’ call convention to call the Windows API function wsprintf,
which is in USER32.dll. The API function returns a C language integer value, so the Typ-
eString indicates an “int” return type. The API function expects two long pointers to strings as
parameters, and also a LONG in this case, so the TypeString indicates two “LPSTR” param-
eters and one “LONG”, separated by commas. If %value is 365, the API will fill the $Output
script language variable with “the value is 365”.

TYPEDLIBRARYCALL, continued

2 Functions

205

UPPER (String)

The UPPER function returns the specified string with the characters converted to their uppercase
equivalents.

Arguments

String

The String argument specifies the string to be converted to uppercase.

Result

The result is a string value corresponding to the String argument, with all characters converted
to uppercase.

Example

In this example:

$city = UPPER (“Houston, Texas”)

the variable $city assumes the string value “HOUSTON, TEXAS”.

UPPER

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

206

USERID ()

The USERID function returns the current value of the UserID system variable.

Note: This function does not apply to the IBM TN3270 emulation.

Result

The result is the current value of the UserID system variable. The string can contain alphanu-
meric characters.

Comments

Compare with the SET USERID command.

Example

This example:

WAIT STRING “UserName:”
SEND UserID()

assumes the UserID system variable has been given a value using the SET USERID command.
When the host sends the user name prompt and the string UserName: is displayed in the ses-
sion window, DCS sends the string contained in the UserID system variable to the host.

USERID

2 Functions

207

VERSION ()

The VERSION function returns the current DCS version number.

Arguments

The VERSION function takes no arguments.

Result

The result is a string value containing the release version number of the currently running
DCS program.

Example

In this example:

dialog
message “Current version is: “ | version ()
button “OK” resume
dialog end
wait resume

the current version of DCS is displayed in a dialog box.

VERSION

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

208

VISIBLE (WinHandle)

The VISIBLE function indicates whether a particular window is visible (or not hidden with the WIN-
DOW HIDE command).

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window. The DCS
application window has the handle number zero.

Result

The result is a Boolean value indicating if the window is visible. If it evaluates to TRUE, the
window is visible. If the function evaluates to FALSE, the window is hidden.

Comments

A window is always considered visible, even if completely obscured by other windows, unless
hidden by the WINDOW HIDE command.

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active child window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

This script example:

IF VISIBLE (%wnd)
$where = Position (%wnd)

employs the VISIBLE function to determine if a window designated by the variable %wnd is
visible. If the window is visible, the result of the POSITION function is placed in the string
variable $where.

VISIBLE

2 Functions

209

WINDOW (WinHandle)

The WINDOW function indicates whether a particular window is a child of the main DCS window.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window handle.

Result

The result is a Boolean value, where TRUE indicates that the specified window is a child win-
dow of the main DCS window, and FALSE indicates that it is not.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active child window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

In this script example:

IF WINDOW (%wnd)
WINDOW MINIMIZE %wnd

if the window designated by the variable %wnd is a child window of the DCS application
window, it is minimized. The icon for the minimized window will be located near the bottom
of the DCS application window.

WINDOW

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

210

WINDOWHND (WinName)

The WINDOWHND function returns the handle of the window whose title is specified by the Win-
Name argument.

Arguments

WinName

The WinName argument is a string expression specifying a particular window title. This is the
title as displayed in the window title bar, to which DCS appends the file type extension (.ses,
.dct, .dcm). This argument can be input with or without the file type extension.

Result

The result is an integer, which is the window handle of the window.

Comments

The ERROR function returns TRUE if the WinName argument is not valid.

If there are multiple windows open with the same name, the window handle for the first one
found will be returned. If there are windows open with the same name but of a different type
(e.g., bbs.ses and bbs.dcm), the window handle for the first one found will be returned.

Example

In this example:

%hnd = WINDOWHND (“tr1”)

the window handle of the window titled “tr1” is assigned to the variable %hnd.

WINDOWHND

2 Functions

211

WINDOWNAME (WinHandle)

The WINDOWNAME function returns the title of the window specified by the WinHandle argument.

Arguments

WinHandle

The WinHandle argument is an integer and identifies a particular window in DCS.

Result

The result is a string, which is the name of the window.

Comments

The window name is the fully qualified path name of session, script or memo files, and null in
the case of an untitled window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

In this example:

$name = WINDOWNAME (0xB4A)

the path name of the window with the window handle “0xB4A” is assigned to the variable
$name.

WINDOWNAME

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

212

WNDCLASS (WinHandle)

The WNDCLASS function returns the DCS window type of a specified window.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window.

Result

The result is an integer value that corresponds to the window type. If ERROR is set to TRUE,
the result is -1 (negative one).

Value Window Type

0 DCS main window

1 Session window

3 Script window

4 Memo window

Comments

The WinHandle argument must be included when using this function.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

This script example:

%WinType = WNDCLASS (%WND)

assigns an integer to the %WinType variable. This integer represents the window type.

WNDCLASS

2 Functions

213

WNDFILE (WinHandle)

The WNDFILE function retrieves the disk file name associated with the specified window.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window.

Result

The result is a string value that is the disk file name of the window.

Comments

The ERROR function returns TRUE if the WinHandle argument is not valid.

WNDFILE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

214

WNDTITLE (WinHandle)

The WNDTITLE function retrieves the window title.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window.

Result

The result is a string value that is the window title.

Comments

The ERROR function returns TRUE if the WinHandle argument is not valid.

Compare with the SET WINDOWTITLE command.

Example

This script segment:

$TITLE = WNDTITLE (%WND)

assigns the title of the window designated by the variable %WND to the variable $TITLE.

WNDTITLE

2 Functions

215

ZOOMED (WinHandle)

The ZOOMED function indicates whether a particular window is maximized.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying a particular window. Use a Win-
Handle of 0 (zero) to specify the main application window.

Result

The result is a Boolean value, where TRUE indicates that the specified window is maximized,
and FALSE indicates that it is not.

Comments

If the WinHandle argument is not included in this function, DCS uses the window handle for
the active child window.

The ERROR function returns TRUE if the WinHandle argument is not valid.

Example

In this example:

IF ZOOMED (%WND)
WINDOW RESTORE (%WND)

if the window is zoomed, the ZOOMED function evaluates to TRUE, and the window is
restored to its previous state.

ZOOMED

3
Commands

DCS

3 C
om

m
ands

217

Commands in Alphabetical Order

Note: Commands flagged with an asterisk do not apply to the IBM TN3270 emulation.

—A—
APPCONFIG Specifies parameter used to configure the DCS application

ARGUMENTS Specifies local variables to be created by a child routine

—B—
BEEP* Sounds the default system .wav file a number of times

BEGIN Specifies the beginning of a command block

BREAK* Sends a break signal to the remote system

—C—
CANCEL Cancels script execution

CLEAR Clears the screen and the history buffer

COLLECT* Stores incoming characters in the specified string

COMPILE Compiles the specified DCS script

CONCAT Concatenates two or more strings

CONNCONFIG Sets a connector parameter for the active session

CONNECT Establishes a connection with a remote system

CONTINUE Conditionally branches execution from a WHILE loop

CREATE DIRECTORY* Creates the specified directory

—D—
(DDE) ACCESS Initiates a DDE conversation

(DDE) ACCESS CANCEL Terminates the active DDE conversation

(DDE) INSTRUCT Sends a string of commands to the DDE server

(DDE) POKE Sends a single data item to the DDE server

(DDE) REQUEST Requests a single data item from the DDE server

(DDE) TABLE REPLY Sends a table to a DDE client in response to an ADVISE or
REQUEST

(DDE) TABLE REQUEST Requests data in the specified format from the DDE server

(DDE) TABLE SEND Sends the specified table to the DDE server

(DDE) WAIT SIGNAL Pauses execution until the next DDE REQUEST is received

(DDE) WHEN ADVISE Activates when a DDE ADVISE request is received

(DDE) WHEN EXECUTE Activates when a DDE EXECUTE request is received

(DDE) WHEN INITIATE Activates when a DDE INITIATE request is received

(DDE) WHEN POKE Activates when a DDE POKE request is received

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

218

Commands in Alphabetical Order, continued

(DDE) WHEN REQUEST Activates when a DDE REQUEST is received

(DDE) WHEN TERMINATE Activates when the current DDE conversation is terminated

DEBUG Writes all script commands to the specified file as they
execute

DECREMENT Decreases the value of an integer variable by one

DIAL* Dials the specified number using the modem

DIALOG Creates a dialog box

(DIALOG) BUTTON Creates a button control in a dialog box

DIALOG CANCEL Removes the active dialog box from the screen

(DIALOG) CHECKBOX Creates a check box control in a dialog box

DIALOG CONTROL* Updates the attributes of a previously defined dialog control

(DIALOG) DIMENSION Specifies the size and position of a control in a dialog box

(DIALOG) EDITTEXT Creates an edit text control in a dialog box

(DIALOG) GROUPBOX Creates a group box control in a dialog box

(DIALOG) ICON Displays the specified icon in a dialog box

(DIALOG) ICONBUTTON Creates an icon button control in a dialog box

(DIALOG) LISTBOX Creates a list box control in a dialog box

(DIALOG) MESSAGE Displays a text message in a dialog box

(DIALOG) NEWLINE Positions the next dialog control on the next line of the
dialog box

(DIALOG) PICTURE Displays the specified picture in a dialog box

(DIALOG) RADIOBUTTON Creates a radio button control in a dialog box

(DIALOG) RADIOGROUP Defines a group of radio button controls in a dialog box

DIALOG UPDATE Updates a previously defined dialog box

DISCONNECT Terminates a connection with a remote system

DISPLAY Displays a string in the session window (does not send the
string to a remote system)

DISPLAYCONFIG Changes the visual characters of a session window

DROPDTR* Holds the DTR line low for the current serial port

—E—
EDIT COPY Copies the specified string to the clipboard

EDIT COPYSPECIAL* Implements the Copy Special selection on the Edit menu
for the session window in the script language

EDIT CUT Cuts the current selection in the active edit window to the
clipboard

3 C
om

m
ands

219

EDIT FIND Searches the active edit window for the specified string

EDIT GOTO Positions the cursor at the beginning of the specified line

EDIT PASTE Pastes text from the clipboard in the active edit window

EDIT REPLACE Searches an edit window for a string and replaces it with
another string

EMULCONFIG Sets an emulator parameter for the active session

END Specifies the end of a command block

EXECUTE Starts a script and does not return to the calling script

—F—
FILE CLOSE* Terminates the text transfer process initiated by a LOGTO-

FILE command

FILE COMPRESS Converts a binary file to a seven data-bit ASCII format

FILE COPY Copies the contents of the source file to the destination file

FILE CREATENAME Prompts you for the name of a file to create

FILE DECOMPRESS Converts a file from a seven data-bit ASCII format to a
binary format

FILE DECRYPT Decrypts the specified encrypted file to be readable

FILE DELETE Deletes the specified file or directory

FILE ENCRYPT Encrypts the specified file to be unreadable

FILE OPENNAME Prompts you for the name of a file to open

FILE PAUSE* Suspends the current text transfer initiated by a LOGTO-
FILE command

FILE RECEIVE BINARY Prepares DCS to receive the specified binary file

FILE RENAME Renames the specified file

FILE RESUME* Resumes the text transfer suspended by the FILE PAUSE
command

FILE SEND BINARY Sends the specified binary file to the remote system

—G—
GENERALCONFIG Specifies parameters for general session configuration op-

tions.

GOTO Branches execution to the specified target

—H—
HANGUP* Disconnects the telephone line on the modem

Commands in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

220

—I—
IF Conditionally executes a command block

INCREMENT Increases the value of an integer variable by one

—K—
KERMIT COPY* Copies a file on a remote host to another place on the re-

mote host

KERMIT DIRECTORY* Lists the contents of a directory on a remote system

KERMIT ERASE* Deletes a file from directory on a remote system

KERMIT FINISH* Sends a Kermit finish packet to the remote Kermit server

KERMIT FREESPACE* Displays the number of free bytes on the remote system

KERMIT HELP* Displays a summary of a topic on the remote system’s opera-
tion

KERMIT LOGOUT* Sends a Kermit logout packet to the remote Kermit server

KERMIT MESSAGE* Sends a short message to an account on the remote system

KERMIT NEWDIRECTORY* Changes the current working directory on a remote system

KERMIT RENAME* Changes the name of a file on a remote system

KERMIT TYPE* Displays the contents of a file from the remote system

KERMIT WHO* Issues the KERMIT WHO command to the remote system

KEY Remaps a given key combination to the specified definition

KEYBOARD Locks and unlocks the keyboard

KEYMAP LOAD Loads the specified keymap

KEYMAP RESET Determines whether or not keystrokes are transmitted to the
local or remote system

KEYMAP SAVE Saves the specified keymap

—L—
LAUNCH Starts another application

LEAVE Branches execution from a command block

LEVEL Specifies a given function key level

LIBRARY CALL Branches execution to the specified DLL procedure

LIBRARY LOAD Loads the specified DLL into memory

LIBRARY UNLOAD Removes the specified DLL from memory

LINENUMBERS Inserts line numbers into a compiled script

LOAD Loads a session file

LOGTOFILE Saves incoming data to a specified file.

Commands in Alphabetical Order, continued

3 C
om

m
ands

221

—M—
MENU Creates or modifies a menu or menu item

MENU CANCEL Removes a script menu

(MENU) DELETE ITEM Removes a menu item from a popup menu

(MENU) DELETE POPUP Removes a popup menu from the menu bar

(MENU) INSERT ITEM Inserts a menu item on a popup menu

(MENU) INSERT POPUP Inserts a popup menu on the menu bar

(MENU) ITEM Adds a menu item to a popup menu

(MENU) POPUP Adds a new popup menu to the menu bar

(MENU) SEPARATOR Adds a menu item separator to a popup menu

MENU UPDATE Updates a previously defined menu option, or group of op-
tions

—N—
NOSHOW Suspends script command trace display

—P—
PARSE Locates a substring in another string, and stores preceding

and succeeding characters from the string

PERFORM Branches execution to the specified target

PRINT CANCEL Terminates active print jobs

PRINT CLOSE Closes the open print channel and terminates any active
print jobs

PRINT FILE Prints a file

PRINT FONT Changes the active print font

PRINT NEWLINE Sends a carriage return and line feed to the printer

PRINT NEWPAGE Sends a form feed to the printer

PRINT OPEN Opens a print channel

PRINT STRING Prints the specified string

PRINT STYLE Changes the active print character characteristics

PRINT TABS Specifies the print tab width

PRINT TERMINAL* Sends the incoming session window data to the printer

—Q—
QUIT Cancels all script execution and terminates the DCS session

—R—
RECORD FORMAT Defines a virtual record template for session window data

fields (used with the RECORD SCAN command)

Commands in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

222

RECORD READ Reads data from a structured or text table into its record
buffer

RECORD SCAN Retrieves data from the session window into a table defined
by the RECORD FORMAT command

RECORD WRITE Writes the contents of the record buffer to a structured or
text table

REMOVE DIRECTORY* Deletes the specified directory

RESTART Branches execution to the first line of the executing script

RESUME Resumes script execution past the current WAIT

RETURN Resumes script execution past the current PERFORM

—S—
SAVE Saves the current settings file

SCREEN Specifies the size and position of the session window (shows
and hides terminal; turns on and off updating)

SCROLL DOWN Scroll down a specified number of lines in session history
buffer

SCROLL LEFT Scroll left a specified number of lines in session history buf-
fer

SCROLL RIGHT Scroll right a specified number of lines in session history
buffer

SCROLL UP Scroll up a specified number of lines in session history buffer

SELECTION Selects a block in the session window

SELECTION APPEND Appends the current selection to the specified file

SELECTION BUFFER Selects the entire contents of the history buffer

SELECTION PRINT Prints the current selection

SELECTION SAVE Saves the current selection to the specified file

SELECTION SEND Sends the current selection to the remote system

SEND Sends the specified string to the remote system

SENDBREAK* Sends a break signal to the remote system

SET Assigns a value to the specified variable

SET APPTITLE Displays the specified string in the application’s title bar

SET ATTRIBUTES Modifies the file attributes of the specified file

SET AUTOSCROLLTOCURSOR Determines whether emulation scrolling follows the cursor

SET AUTOSIZE* Determines the status of the Automatically Size check box
on the Display tab of the Session Properties dialog

SET BACKSPACEDESTRUCTIVE* Determines whether the backspace key is destructive

Commands in Alphabetical Order, continued

3 C
om

m
ands

223

SET BACKSPACEKEY* Specifies the character sent when the [Backspace] key is
pressed

SET BAUDRATE* Changes the baud rate of the selected communications port

SET BINARYTRANSFERPARAMS* Changes the settings for a binary transfer protocol

SET BINARYTRANSFERS Sets the current binary transfer protocol or host environ-
ment

SET BUFFERLINES Specifies the number of lines in the session window and its
history buffer

SET CARRIERDETECT* Sets the carrier detect flag

SET COLUMNS Specifies the number of columns in the session window

SET CONNECTION* Specifies a communications connector, including those from
third parties

SET CONNECTMESSAGE* Changes the connection message from the Phone Book

SET CONNECTRESULT* Changes the value of the ConnectResult variable

SET CURSOR Sets the shape of the cursor and turns display on and off

SET DATABITS* Sets the number of data bits to be used during transmission

SET DDETIMEOUT Sets the timeout period for DDE commands

SET DECIMAL Specifies the number of decimal places for string representa-
tions of real numbers

SET DEFAULTSESSIONHANDLE Specifies a handle for the default session window

SET DIRECTORY Sets the directory location for a type of file

SET EMULATION* Loads the specified terminal emulation DLL

SET FKEYSSHOW Sets the function keys to appear when file opened

SET FLOWCONTROL* Specifies the desired flow control method

SET KEEPPRINTCHANNELOPEN Relinquishes Windows print channel

SET LOCALECHO* Shows and hides local keystrokes

SET NETID* Changes the characters of the NetID system variable

SET OUTGOINGCR* Appends line feed characters to outgoing carriage returns

SET PARITY* Specifies the type of parity to be used during data transmis-
sion

SET PASSTHROUGH* Sets the Raw Passthrough Mode for a printer

SET PASSWORD* Changes the characters of the Password system variable

SET PHONENUMBER* Specifies the default phone number for the DIAL command

SET RESULT Assigns a value to the RESULT string

SET RETRY* Specifies whether to continue redialing until connection

SET RETRYDELAY* Sets the delay time between dial attempts

SET SENDDELAY Specifies the amount of time to wait between transmitting
characters

Commands in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

224

SET SIGNAL* Allows the system bell to sound when a connection is made

SET SOUND Controls whether warning bells from the host are enabled

SET STOPBITS* Sets the number of stop bits used during serial transmissions

SET TERMCLOSE Allows or disallows you to close the session window

SET TERMFONT Specifies the font displayed in the session window

SET USERID* Changes the characters of the UserID system variable

SET WILDCARD* Sets the characters representing any arbitrary characters

SET WINDOWTITLE Displays the specified string in the active window’s title bar

SET WORDWRAP* Specifies the column at which to wrap incoming text

SET XCLOCK Specifies how long to wait for an XCLOCK host message to
clear before generating an execution error during a send

SET XSYSTEM Specifies how long to wait for an XSYSTEM host message
to clear before generating an execution error during a send

SETTINGS Allows you to modify options on a Session Properties tab

SHOW Resumes command audit initiated by DEBUG command

SPAWN Starts an independent script without interrupting current
script

SWITCH Branches execution to multiple command blocks

SYSTEM* Performs a specialized system operation

—T—
TABLE CLEAR Clears any existing data from the specified table

TABLE CLOSE Closes the specified table

TABLE COPY Copies the contents of a given table to the specified table

TABLE DEFINE Prepares a table for random access file operations

TABLE LOAD Imports data from a file or the clipboard to the specified
table

TABLE SAVE Exports the contents of the specified table to a file or the
clipboard

TABLE SORT Performs a sort on the specified table using the given criteria

TASKERROR Calls DCS’s internal execution error handling routine

TIMER RESET Resets the specified timer

TITLE Assigns a title, displayed in the application title bar, to a task
file

TOOLBARHIDE Closes the specified toolbar.

TOOLBARSHOW Displays the specified toolbar.

TRANSFERS Specifies parameters for file transfers with a 3270 command
processor

Commands in Alphabetical Order, continued

3 C
om

m
ands

225

—W—
WAIT CHAR* Pauses script execution until specified character is received

WAIT CLOSE* Pauses execution while LOGTOFILE accesses a file

WAIT DELAY Pauses execution until after a specified amount of time or
RESUME

WAIT ECHO Pauses execution until DCS receives a character

WAIT EDIT Opens a memo window and pauses execution

WAIT PROMPT* Pauses execution until a number of characters are received

WAIT QUIET Pauses execution until an amount of time elapses without
character transmission

WAIT RESUME Pauses execution until a RESUME command is executed

WAIT SCREEN Pauses execution until remote host changes the data in the
terminal window

WAIT STRING* Pauses execution until the specified string is received

WAIT UNTIL Pauses execution until the specified time of day

WHEN CANCEL Cancels the specified WHEN commands

WHEN COLLECT Activates storing screen data to a string

WHEN DISCONNECT Activates when the communications connection is termi-
nated

WHEN ECHO Activates when any character is received

WHEN ERROR Activates when an execution error is encountered

WHEN INPUT Activates when a keystroke-generated character is transmit-
ted

WHEN QUIET Activates after time elapses without character transmission

WHEN SCREEN Activates when the specified screen region is modified

WHEN STRING* Activates when the specified string is received

WHEN TIMER Activates after the specified amount of time has elapsed

WHEN WINDOW* Filters out Windows messages to child windows

WHILE Conditionally continuously executes a logical command

WINDOW ACTIVATE Brings the specified window into focus

WINDOW ARRANGE Tiles all open document windows

WINDOW CLOSE Closes the specified window

WINDOW DEFAULT Passes a Windows message intercepted by the WHEN WIN-
DOW command to the default handler for a window

WINDOW HIDE Hides the application window and its child window

WINDOW MAXIMIZE Maximizes the specified window

Commands in Alphabetical Order, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

226

WINDOW MESSAGE Sends a Windows message to the specified window

WINDOW MINIMIZE Sets DCS to run as an icon

WINDOW MOVE Moves and resizes the specified window

WINDOW OPEN Opens a new window, or one containing an existing file

WINDOW RESTORE Restores the DCS application window to its prior state

WINDOW STACK Stacks all open windows in cascade fashion

WINDOW UNHIDE Displays the application window and its child window

—X—
XFERCONFIG Sets a file transfer parameter for the active session

Commands in Alphabetical Order, continued

3 C
om

m
ands

227

Commands by Category

Note: Commands flagged with an asterisk do not apply to the IBM TN3270 emulation.

Assignment Commands
SET Assigns a value to the specified variable

SET RESULT Assigns a value to a RESULT string

Branching, Subroutine, and Conditional Commands
ARGUMENTS Specifies local variables to be created by a child routine

BEGIN Specifies the beginning of a command block

CONTINUE Conditionally branches execution from a WHILE loop

(DDE) WAIT SIGNAL Pauses execution until the next DDE REQUEST is received

(DDE) WHEN ADVISE Activates when a DDE ADVISE request is received

(DDE) WHEN EXECUTE Activates when a DDE EXECUTE request is received

(DDE) WHEN INITIATE Activates when a DDE INITIATE request is received

(DDE) WHEN POKE Activates when a DDE POKE request is received

(DDE) WHEN REQUEST Activates when a DDE REQUEST is received

(DDE) WHEN TERMINATE Activates when the current DDE conversation is terminated

END Specifies the end of a command block

EXECUTE Starts a script and does not return to the calling script

FILE PAUSE* Suspends the current text transfer

GOTO Branches execution to the specified target

IF Conditionally executes a command block

LAUNCH Starts another application

LEAVE Branches execution from a command block

LIBRARY CALL Branches execution to the specified DLL procedure

PERFORM Branches execution to the specified target

RESTART Branches execution to the first line of the executing script

RESUME Resumes script execution past the current WAIT

RETURN Resumes script execution past the current PERFORM

SPAWN Starts an independent script without interrupting current
script

SWITCH Branches execution to multiple command blocks

WAIT CHAR* Pauses script execution until specified character is received

WAIT CLOSE* Pauses execution while LOGTOFILE accesses a file

WAIT DELAY Pauses execution until after a specified amount of time or
RESUME

WAIT ECHO Pauses execution until a character is received

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

228

Commands by Category, continued

WAIT EDIT Opens a memo window and pauses execution

WAIT PROMPT* Pauses execution until a number of characters are received

WAIT QUIET Pauses execution until time elapses without character trans-
mission

WAIT RESUME Pauses execution until a RESUME command is executed

WAIT SCREEN Pauses execution until remote host changes the data in the
terminal window

WAIT STRING* Pauses execution until the specified string is received

WAIT UNTIL Pauses execution until the specified time of day

WHEN CANCEL Cancels the specified WHEN commands

WHEN COLLECT Activates storing screen data to a string

WHEN DISCONNECT Activates when the communications connection is termi-
nated

WHEN ECHO Activates when any character is received

WHEN ERROR Activates when an execution error is encountered

WHEN INPUT Activates when a keystroke-generated character is transmit-
ted

WHEN QUIET Activates after time elapses without character transmission

WHEN SCREEN Activates when the specified screen region is modified

WHEN STRING* Activates when the specified string is received

WHEN TIMER Activates after the specified amount of time has elapsed

WHEN WINDOW* Filters out Windows messages to child windows

WHILE Conditionally continuously executes a logical command

Command Block Commands
BEGIN Specifies the beginning of a command block

END Specifies the end of a command block

Configuration Commands
APPCONFIG Specifies parameter used to configure the DCS application.

CONNCONFIG Sets a connector parameter for the active session

DISPLAYCONFIG Changes the visual characters of a session window

EMULCONFIG Sets an emulator parameter for the active session

GENERALCONFIG Specifies parameters for general session configuration op-
tions

SET BINARYTRANSFERS Sets the current binary transfer protocol or host environ-
ment

3 C
om

m
ands

229

Commands by Category, continued

SET CONNECTION* Specifies a communications connector, including from third
parties

SET EMULATION* Loads the specified terminal emulation DLL

XFERCONFIG Sets a file transfer parameter for a session

Conversion Commands
FILE COMPRESS Converts a binary file to a seven data-bit ASCII format

Data Transfer Commands
COLLECT* Stores incoming characters in the specified string

FILE CLOSE* Terminates the current text transfer being performed

FILE COMPRESS Converts a binary file to a seven data-bit ASCII format

FILE DECOMPRESS Converts a file from a seven data-bit ASCII format to a
binary format

FILE PAUSE* Suspends the current text transfer being performed

FILE RECEIVE BINARY Prepares DCS to receive the specified binary file

FILE RESUME* Resumes the text transfer suspended by the FILE PAUSE
command

FILE SEND BINARY Sends the specified binary file to the remote system

KERMIT COPY* Copies a file on a remote host to another place on the re-
mote host

KERMIT DIRECTORY* Lists the contents of a directory on a remote system

KERMIT ERASE* Deletes a file from a directory on a remote system

KERMIT FINISH* Sends a Kermit finish packet to the remote Kermit server

KERMIT FREESPACE* Displays the number of free bytes on the remote system

KERMIT HELP* Displays a summary of a topic on the remote system’s opera-
tion

KERMIT LOGOUT* Sends a Kermit logout packet to the remote Kermit server

KERMIT MESSAGE* Sends a short message to an account on the remote system

KERMIT NEWDIRECTORY* Changes the current working directory on a remote system

KERMIT RENAME* Changes the name of a file on a remote system

KERMIT TYPE* Displays the contents of a file from the remote system

KERMIT WHO* Issues the KERMIT WHO command to the remote system

LOGTOFILE Saves incoming data to a specified file.

SELECTION SEND Sends the current selection to the remote system

SEND Sends the specified string to the remote system

SET BINARYTRANSFERPARAMS Changes the settings for a binary transfer protocol

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

230

Commands by Category, continued

SET BINARYTRANSFERS Sets the current binary transfer protocol or host environ-
ment

SET DATABITS* Sets the number of data bits to be used during serial trans-
mission

SET OUTGOINGCR* Appends line feed characters to outgoing carriage returns

SET PARITY* Specifies the type of parity to use during data transmission

SET SENDDELAY Specifies the amount of time to wait between transmitting
characters

SET STOPBITS* Specifies the number of stop bits to be used during a con-
nection

SET XCLOCK Specifies how long to wait for an XCLOCK host message to
clear before generating an execution error during a send

SET XSYSTEM Specifies how long to wait for an XSYSTEM host message
to clear before generating an execution error during a send

TRANSFERS Specifies parameters for file transfers with a 3270 command
processor

WAIT CLOSE* Pauses a script while the LOGTOFILE command access a file

Dialog Commands
DIALOG Creates a dialog box

(DIALOG) BUTTON Creates a button control in a dialog box

DIALOG CANCEL Removes the active dialog box from the screen

(DIALOG) CHECKBOX Creates a check box control in a dialog box

DIALOG CONTROL* Updates the attributes of a previously defined dialog control

(DIALOG) DIMENSION Specifies the size and position of a control in a dialog box

(DIALOG) EDITTEXT Creates an edit text control in a dialog box

(DIALOG) GROUPBOX Creates a group box control in a dialog box

(DIALOG) ICON Displays the specified icon in a dialog box

(DIALOG) ICONBUTTON Creates an icon button control in a dialog box

(DIALOG) LISTBOX Creates a list box control in a dialog box

(DIALOG) MESSAGE Displays a text message in a dialog box

(DIALOG) NEWLINE Positions the next dialog control on the next line of the
dialog box

(DIALOG) PICTURE Displays the specified picture in a dialog box

(DIALOG) RADIOBUTTON Creates a radio button control in a dialog box

(DIALOG) RADIOGROUP Defines a group of radio button controls in a dialog box

DIALOG UPDATE Updates a previously defined dialog box

3 C
om

m
ands

231

Commands by Category, continued

Dynamic Data Exchange
(DDE) ACCESS Initiates a DDE conversation

(DDE) ACCESS CANCEL Terminates the active DDE conversation

(DDE) INSTRUCT Sends a string of commands to the DDE server

(DDE) POKE Sends a single data item to the DDE server

(DDE) REQUEST Requests a single data item from the DDE server

(DDE) TABLE REPLY Sends a table to a DDE client in response to an ADVISE or
REQUEST

(DDE) TABLE REQUEST Requests data in the specified format from the DDE server

(DDE) TABLE SEND Sends the specified table to the DDE server

(DDE) WAIT SIGNAL Pauses a script until a client receives another DDE request

(DDE) WHEN ADVISE Activates when a DDE ADVISE request is received

(DDE) WHEN EXECUTE Activates when a DDE EXECUTE request is received

(DDE) WHEN INITIATE Activates when a DDE INITIATE request is received

(DDE) WHEN POKE Activates when a DDE POKE request is received

(DDE) WHEN REQUEST Activates when a DDE REQUEST is received

(DDE) WHEN TERMINATE Activates when the current DDE conversation is terminated

LAUNCH Starts another application

SET DDETIMEOUT Sets the timeout period for DDE commands

Dynamic Link Library Commands
LIBRARY CALL Branches execution to the specified DLL procedure

LIBRARY LOAD Loads the specified DLL into memory

LIBRARY UNLOAD Removes the specified DLL from memory

SET EMULATION* Loads the specified terminal emulation DLL

Edit Commands
EDIT COPY Copies the specified string to the clipboard

EDIT COPYSPECIAL* Implements the Copy Special selection on the Edit menu
for the session window in the script language

EDIT CUT Cuts the current selection in the active edit window to the
clipboard

EDIT FIND Searches the active edit window for the specified string

EDIT GOTO Positions the cursor at the beginning of the specified line

EDIT PASTE Pastes text from the clipboard in the active edit window

EDIT REPLACE Searches an edit window for a string and replaces it with
another string

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

232

Commands by Category, continued

PARSE Locates a substring in another string, and stores preceding
and succeeding characters from the string

SELECTION Selects a block in the session window

SELECTION APPEND Appends the current selection to the specified file

SELECTION BUFFER Selects the entire contents of the history buffer

SET WILDCARD* Sets the characters representing any arbitrary characters

TABLE SORT Performs a sort on the specified table using the given criteria

WAIT EDIT Opens a memo window and pauses execution until it is
closed

File Commands
CREATE DIRECTORY* Creates the specified directory

EDIT COPYSPECIAL* Implements the Copy Special selection on the Edit menu

FILE CLOSE* Terminates a text transfer performed by a LOGTOFILE or
FILE VIEW TEXT command

FILE COMPRESS Converts a binary file to a seven data-bit ASCII format

FILE COPY Copies the contents of the source file to the destination file

FILE CREATENAME Prompts you for the name of a file to create

FILE DECOMPRESS Converts a file from a seven data-bit ASCII format to a
binary format

FILE DECRYPT Decrypts the specified encrypted file to be readable

FILE DELETE Deletes the specified file or directory

FILE ENCRYPT Encrypts the specified file to be unreadable

FILE OPENNAME Prompts you for the name of a file to open

FILE PAUSE* Suspends a text transfer command until FILE RESUME
executes

FILE RECEIVE BINARY Prepares DCS to receive a binary file

FILE RENAME Renames the specified file

FILE RESUME* Resumes the text transfer suspended by the FILE PAUSE
command

FILE SEND BINARY Sends the specified binary file to the remote system

LOAD Loads a session file

LOGTOFILE Saves incoming data to a specified file.

PRINT FILE Prints a file

REMOVE DIRECTORY* Deletes the specified directory

SAVE Saves the current settings file

SELECTION APPEND Appends the current selection to the specified file

3 C
om

m
ands

233

Commands by Category, continued

SELECTION SAVE Saves the current selection to the specified file

SET ATTRIBUTES Modifies the file attributes of the specified file

SET DIRECTORY Sets the directory location for a type of file

TABLE DEFINE Prepares a table for random access file operations

TABLE LOAD Imports data from a file or the clipboard to the specified
table

TABLE SAVE Exports the contents of the specified table to a file or the
clipboard

WAIT CLOSE* Pauses execution until LOGTOFILE closes its file

WAIT EDIT Opens a memo window and pauses execution

WINDOW CLOSE Closes the specified window and prompts you to save any
changes

WINDOW OPEN Opens a new window, or one containing an existing file

Math Commands
DECREMENT Decreases the value of an integer variable by one

INCREMENT Increases the value of an integer variable by one

Menu & Toolbar Commands
MENU Creates or modifies a menu or menu item

MENU CANCEL Removes a script menu

MENU DELETE ITEM Removes a menu item from a popup menu

MENU DELETE POPUP Removes a popup menu from the menu bar

MENU INSERT ITEM Inserts a menu item on a popup menu

MENU INSERT POPUP Inserts a popup menu on the menu bar

(MENU) ITEM Adds a menu item to a popup menu

(MENU) POPUP Adds a new popup menu to the menu bar

(MENU) SEPARATOR Adds a menu item separator to a popup menu

MENU UPDATE Updates a previously defined menu option, or group of op-
tions

TOOLBARHIDE Hides a specified toolbar

TOOLBARSHOW Displays a specified toolbar

Network Commands
SET CONNECTION* Specifies a communications connector, including from third

parties

SET NETID* Changes the characters of the NetID variable

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

234

Commands by Category, continued

Print Commands
EDIT COPYSPECIAL* Implements the Copy Special selection on the Edit menu

PRINT CANCEL Terminates active print jobs

PRINT CLOSE Closes the open print channel and terminates any active
print jobs

PRINT FILE Prints the specified file

PRINT FONT Changes the active print font

PRINT NEWLINE Sends a carriage return and line feed to the printer

PRINT NEWPAGE Sends a form feed to the printer

PRINT OPEN Opens a print channel

PRINT STRING Prints the specified string

PRINT STYLE Changes the active print character characteristics

PRINT TABS Specifies the print tab width

PRINT TERMINAL* Sends the incoming session window data to the printer

SELECTION PRINT Prints the current selection

SET KEEPPRINTCHANNELOPEN Relinquishes Windows print channel

SET PASSTHROUGH* Sets the Raw Passthrough Mode for a printer

Script Control Commands
CANCEL Cancels script execution

COMPILE Compiles the specified DCS script

DEBUG Writes all script commands to the specified file as they
execute

EXECUTE Starts a script and does not return to the calling script

LINENUMBERS Inserts linenumbers into a compiled script

NOSHOW Suspends script command trace display

PERFORM Starts a script and returns to the calling script when a RE-
TURN executes

QUIT Cancels all script execution and terminates the DCS session

RESTART Branches execution to the first line of the executing script

SET RESULT Assigns a value to the RESULT system variable

SHOW Resumes command audit initiated by DEBUG command

SPAWN Starts an independent script without interrupting current
script

TASKERROR Calls DCS’s internal execution error handling routine

3 C
om

m
ands

235

Commands by Category, continued

Session Window Commands
CLEAR Clears the screen and the history buffer

DISPLAY Displays a string in the session window (does not send the
string to a remote system)

DISPLAYCONFIG Changes the visual characters of a session window

EDIT COPYSPECIAL* Implements the Copy Special selection on the Edit menu

KEYMAP LOAD Loads the specified keymap

KEYMAP SAVE Saves the specified keymap

NOSHOW Suspends command audit initiated by DEBUG command

SCREEN Specifies the size and position of the session window (shows
and hides terminal; turns on and off updating)

SCROLL DOWN Scroll down a specified number of lines in session history
buffer

SCROLL LEFT Scroll left a specified number of lines in session history buf-
fer

SCROLL RIGHT Scroll right a specified number of lines in session history
buffer

SCROLL UP Scroll up a specified number of lines in session history buffer

SET AUTOSCROLLTOCURSOR Determines whether emulation scrolling follows the cursor

SET AUTOSIZE* Determines the status of the Automatically Size check box
on the Display tab of the Session Properties dialog

SET BACKSPACEDESTRUCTIVE* Determines whether the backspace key is destructive

SET BUFFERLINES Specifies the number of lines in the session window and its
history buffer

SET COLUMNS Specifies the number of columns in the session window

SET CURSOR Sets the shape of the cursor and turns display on and off

SET DEFAULTSESSIONHANDLE Specifies a handle for the default session window

SET TERMCLOSE Allows or disallows you to close the session window

SET TERMFONT Specifies the font displayed in the session window

SET WORDWRAP* Specifies the column at which to wrap incoming text

WHEN SCREEN Activates when the specified screen region is modified

String Commands
COLLECT* Stores incoming characters in a specified string

CONCAT Concatenates two or more strings

DISPLAY Displays a string in the session window (does not send the
string to the remote system)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

236

Commands by Category, continued

PARSE Locates a substring in another string, and stores preceding
and succeeding characters from the string

PRINT STRING Prints the specified string

SET DECIMAL Specifies the number of decimal places for string representa-
tions of real numbers

WAIT STRING* Pauses execution until the specified string is received

WHEN STRING* Activates when the specified string is received

System Commands
BEEP* Sounds the default system .wav file a number of times

FKEYS Shows and hides the function keys

KEY Remaps a given key combination to the specified definition

KEYBOARD Locks and unlocks the keyboard

KEYMAP RESET Determines whether or not keystrokes are transmitted to the
local or remote system

LEVEL Specifies a given function key level

SET CONNECTMESSAGE* Changes the connection message from the Phone Book

SET CONNECTRESULT* Changes the value of the ConnectResult variable

SET FKEYSSHOW Sets the function keys to appear when file opened

SET NETID* Changes the characters of the NetID system variable

SET PASSWORD* Changes the characters of the Password system variable

SET USERID* Changes the characters of the UserID system variable

SYSTEM* Performs a specialized system operation

TIMER RESET Resets the specified timer

TITLE Assigns a title, displayed in the application title bar, to a task
file

Table Commands
(DDE) TABLE REPLY Sends a table to a DDE client in response to an ADVISE or

REQUEST

(DDE) TABLE REQUEST Requests data in the specified format from the DDE server

(DDE) TABLE SEND Sends the specified table to the DDE server

RECORD FORMAT Defines a virtual record template for session window data
fields (used with the RECORD SCAN command)

RECORD READ Reads data from a structured or text table into its record
buffer

RECORD SCAN Retrieves data from the session window into a table defined
by the RECORD FORMAT command

3 C
om

m
ands

237

Commands by Category, continued

RECORD WRITE Writes the contents of the record buffer to a structured or
text table

TABLE CLEAR Clears any existing data from the specified table

TABLE CLOSE Closes the specified table

TABLE COPY Copies the contents of a given table to the specified table

TABLE DEFINE Prepares a table for random access file operation

TABLE LOAD Imports data from a file or the clipboard to a table

TABLE SAVE Exports the contents of the specified table to a file or the
clipboard

TABLE SORT Performs a sort on the specified table using the given criteria

Telecommunications Commands
BREAK* Sends a break signal to the remote system

CONNCONFIG Sets a connector parameter for the active session

CONNECT Establishes a connection with a remote system

DIAL* Dials the specified number using the modem

DISCONNECT Terminates a connection with a remote system

DROPDTR* Holds the DTR line low for the current serial port

EMULCONFIG Sets an emulator parameter for the active session

HANGUP* Disconnects the telephone line on the modem

KERMIT COPY* Copies a file on a remote host to another place on the re-
mote host

KERMIT DIRECTORY* Lists the contents of a directory on a remote system

KERMIT ERASE* Deletes a file from directory on a remote system

KERMIT FINISH* Sends a Kermit finish packet to the remote Kermit server

KERMIT FREESPACE* Displays the number of free bytes on the remote system

KERMIT HELP* Displays a summary of a topic on the remote system’s opera-
tion

KERMIT LOGOUT* Sends a Kermit logout packet to the remote Kermit server

KERMIT MESSAGE* Sends a short message to an account on the remote system

KERMIT NEWDIRECTORY* Changes the current working directory on a remote system

KERMIT RENAME* Changes the name of a file on a remote system

KERMIT TYPE* Displays the contents of a file from the remote system

KERMIT WHO* Issues the KERMIT WHO command to the remote system

SENDBREAK* Sends a break signal to the remote system

SET BACKSPACEDESTRUCTIVE* Determines whether the backspace key is destructive

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

238

Commands by Category, continued

SET BACKSPACEKEY* Specifies the character sent when the [Backspace] key is
pressed

SET BAUDRATE* Changes the baud rate of the selected communications port

SET BINARYTRANSFERPARAMS* Changes the settings for a binary transfer protocol

SET BINARYTRANSFERS Sets the current binary transfer protocol or host environ-
ment

SET CARRIERDETECT* Sets the carrier detect flag

SET CONNECTION* Specifies a communications connector, including from third
parties

SET CONNECTMESSAGE* Changes the connection message from the Phone Book

SET CONNECTRESULT* Changes the value of the ConnectResult variable

SET DATABITS* Sets the number of data bits to be used during transmission

SET EMULATION* Loads the specified terminal emulation DLL

SET FLOWCONTROL* Specifies the desired flow control method

SET LOCALECHO* Shows and hides local keystrokes

SET NETID* Changes the characters of the NetID system variable

SET OUTGOINGCR* Appends line feed characters to outgoing carriage returns

SET PARITY* Specifies the type of parity to be used during data transmis-
sion

SET PHONENUMBER* Specifies the default phone number for the DIAL command

SET RETRY* Specifies whether to continue redialing until connection

SET RETRYDELAY* Sets the delay time between dial attempts

SET SIGNAL* Allows the system bell to sound when a connection is made

SET SOUND Controls whether warning bells from the host are enabled

SET STOPBITS* Sets the number of stop bits used during serial transmissions

SET XCLOCK Specifies how long to wait for an XCLOCK host message to
clear before generating an execution error during a send

SET XSYSTEM Specifies how long to wait for an XSYSTEM host message
to clear before generating an execution error during a send

SETTINGS Allows you to modify options on a Session Properties tab

WAIT ECHO Pauses execution until DCS receives a character

WAIT PROMPT* Pauses execution until a number of characters are received

WAIT QUIET Pauses execution until an amount of time elapses without
character transmission

WAIT SCREEN Pauses execution until remote host changes the data in the
terminal window

WAIT STRING* Pauses execution until the specified string is received

3 C
om

m
ands

239

Commands by Category, continued

WHEN DISCONNECT Activates when the communications connection is termi-
nated

WHEN ECHO Activates when any character is received

WHEN INPUT Activates when a keystroke-generated character is transmit-
ted

WHEN QUIET Activates after time elapses without character transmission

WHEN STRING* Activates when the specified string is received

XFERCONFIG Sets a file transfer parameter for a session

Window Commands
DISPLAYCONFIG Changes the visual characters of a session window

SET APPTITLE Displays the specified string in the application’s title bar

SET WINDOWTITLE Displays the specified string in the active window’s title bar

WHEN WINDOW* Filters out Windows messages to child windows

WINDOW ACTIVATE Brings the specified window into focus

WINDOW ARRANGE Tiles all open document windows

WINDOW CLOSE Closes the specified window

WINDOW DEFAULT Passes a Windows message intercepted by the WHEN WIN-
DOW command to the default handler for a window

WINDOW HIDE Hides the application window and its child window

WINDOW MAXIMIZE Maximizes the specified window

WINDOW MESSAGE Sends a Windows message to the specified window

WINDOW MINIMIZE Sets DCS to run as an icon

WINDOW MOVE Moves and resizes the specified window

WINDOW OPEN Opens a new window, or one containing an existing file

WINDOW RESTORE Restores the DCS application window to its prior state

WINDOW STACK Stacks all open windows in cascade fashion

WINDOW UNHIDE Displays the application window and its child window

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

240

APPCONFIG

APPCONFIG String

The APPCONFIG command is used to set the value of a parameter used to configure options which
apply to the entire DCS application.

Arguments

String

The String argument represents a single keyword followed by the assignment operator (=) and
a valid setting. Together, the keyword and the setting are used to configure the options for the
DCS application.

Keywords for General tab Valid Setting(s)

ShowSplashScr 1 (true), 0 (false)

ConfirmMessages 1 (true), 0 (false)

SaveAppPosition 1 (true), 0 (false)

ShowErrorMessages 1 (true), 0 (false)

Use SessionWizard 1 (true), 0 (false)

ShowBkgrdBitMap 1 (true), 0 (false)

EnableOLEMenu 1 (true), 0 (false)

EnableOLEToolbar 1 (true), 0 (false)

EnableOLEStatusBar true,false

Keywords for File Locations tab Valid Setting(s)

DefaultSesEmulation addsvp60, ansi, att605, att4425,
ibm3270,ibm5250, tandem, vt420

DefaultSesConnector comdir, comtapi, fmidll, merdnlat, telnet

DefaultSesFileTransfer indfile, kermit, wixfdll, zmodem

UserSessionDir string of valid path

UserScriptDir string of valid path

UserDownLoadDir string of valid path

UserUpLoadDir string of valid path

UserMemoDir string of valid path

UserMapDir string of valid path

UserConnectorDir string of valid path

UserEmulationDir string of valid path

UserFileTransferDir string of valid path

UserDisplayDir string of valid path

UserFontDir string of valid path

3 C
om

m
ands

241

Comments

The keywords correspond to parameters available in the General and File Location tabs of
the Options dialog . This command, therefore, allows you to set these parameters through the
DCS script language rather than using the dialog .

The ERROR function returns TRUE if the String keyword is invalid.

Note: Changes made via scripting to application options remain in effect even after
closing and restarting DCS.

Also see: GETAPPCONFIG function

Example

In this example:

APPCONFIG “UseSessionWizard=false”
APPCONFIG “UserSessionDir=p:\public\usersess”
APPCONFIG “UserDownloadDir=c:\windows\profiles\user1\download”

the session wizard is disabled, the default session file directory is set to a mapped network
drive location, and the default file download directory is set to a specific user’s folder on a local
drive.

APPCONFIG, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

242

ARGUMENTS (Parameter, ...)

The ARGUMENTS command specifies the names of local variables a script routine uses.

Arguments

(Parameter, ...)

The (Parameter, ...) argument specifies the local variables in a routine. It consists of zero or
more string, numeric, or Boolean variables.

Comments

If the ARGUMENTS command is the first command in the child routine, these variables may
be used as parameters to pass values to and from a parent routine. When execution returns to
the parent routine, all variables created by the ARGUMENTS command are destroyed.

You may define more than one ARGUMENTS command in a single routine. All ARGU-
MENTS commands may be used to create variables, but only the first one specified may pass
parameters to and from the parent routine.

Example

*subroutine
ARGUMENTS ($name, %amount, !value)

In this example, DCS creates three local variables that may also be used to pass parameters.

*subroutine
ARGUMENTS ()
ARGUMENTS ($str1, $str2, %index)

In this example, DCS creates three local variables. The first ARGUMENTS command carries a
null parameter list (indicating the variables are not to be used as parameters, and will neither
receive parameters from, nor pass parameters to, a parent routine).

ARGUMENTS

3 C
om

m
ands

243

BEEP Num

The BEEP command rings the default system bell one or more times.

Note: This command does not apply to IBM TN3270 emulations.

Argument

Num

The optional Num argument is an integer specifying the number of times DCS will ring the
system bell. If the Num argument is not included, the system bell will ring once.

Comments

If a sound driver is loaded, this command plays the default sound (or WAV file) through the
PC’s multimedia speaker. If your computer does not have multimedia capability, or if you have
disabled the multimedia capability, the default PC system bell will ring from the PC’s speaker.

Example

In this example:

If Exists (“C:\TEXT.TXT”)
Display “OK”
Else
Beep 3

if TEXT.TXT resides at the root of the C: drive, DCS displays OK in the active session win-
dow. If the file is not found, the bell rings three times.

BEEP

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

244

BEGIN

The BEGIN command specifies the beginning of a command block. An END command must follow
the command block.

Arguments

The BEGIN command takes no arguments.

Example

WHEN DISCONNECT
BEGIN
DISPLAY (0,0) “Connection terminated”
PERFORM no_carrier
END

The command block executes after the WHEN DISCONNECT command. DCS displays the
string “Connection terminated” in the session window and then performs the routine
labeled no_carrier. The END command specifies the end of the command block.

BEGIN

3 C
om

m
ands

245

BREAK

BREAK DelayUnits

The BREAK command sends the break signal.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DelayUnits

The optional DelayUnits argument is an integer specifying the length of the breaksignal,
where one delay unit equals 117 milliseconds. If you do not include the DelayUnits argu-
ment, DCS uses a default value of two (specifying a short break).

Comments

The representations for the standard break signals are:

Delay Units Signal

2 Short Break (0.233 seconds)

30 Long Break (3.5 seconds)

Example

In this example:

SEND “password”
BREAK 30

DCS sends the string password to the remote system, followed by a long break.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

246

CANCEL

The CANCEL command stops script execution.

Arguments

The CANCEL command takes no arguments.

Comments

The CANCEL command stops only one script; it will not stop any other script, even those
launched by the stopped script.

Example

In this example:

;create structured table0
TABLE DEFINE 0 FIELDS CHAR 20 INT 5 INT 10
;
;the following error routine checks to see if
;DCS was able to create table0, and if not,
;displays an error message in the current
;session window and terminates the script
IF ERROR
BEGIN
DISPLAY “Table not defined”
CANCEL
END
;
;fill structured table0 with data
TABLE LOAD 0 FROM “DATA” AS SYLK
;
;the following error routine checks to see if
;DCS was able to fill table0, and if not,
;displays an error message in the current
;session window and terminates the script
IF ERROR ()
BEGIN
DISPLAY “Table not loaded”
CANCEL
END

if either error occurs during script execution, the CANCEL command directs DCS to cancel
script execution at that point. Using the CANCEL command in this manner ensures that script
execution does not continue if critical script commands do not execute as intended.

CANCEL

3 C
om

m
ands

247

CLEAR Screen WINDOW WinHandle

The CLEAR command clears the session window screen.

Arguments
Screen

The optional Screen argument directs DCS to clear only the portion of the history buffer vis-
ible in the session window. If the Screen argument is not included, the entire history buffer of
the session is cleared. When clearing a session window with paged terminal information from a
remote system, the Screen argument is unnecessary since such sessions have no history buffer.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular window in DCS.

The WINDOW clause clears the screen or history buffer of the session window specified by the
WinHandle argument. Including this clause allows a script to clear any DCS window con-
tents.

Comments

If the WINDOW clause is not included in the command, the script clears the screen of the cur-
rent session.

If the window handle in the clause is the handle of a script or memo window, the entire con-
tents of the file will be deleted!

Example

In this example:

DIAL
.
.
.
IF CONNECT ()
CLEAR
ELSE
CANCEL
.
.
.

the script dials the phone number saved in the properties of the current session window. If the
remote system allows DCS to connect, the contents of the session window and corresponding
history buffer are deleted. If the remote system does not allow the connection to occur, the
script stops.

CLEAR

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

248

COLLECT

COLLECT UNTIL String1 EXCLUDE String2 String3 LIMIT Num SAVECR SBoolean
NOTERMINAL WINDOW WinHandle

The COLLECT command stores a maximum of 254 incoming characters from a session window into a
string variable until DCS receives a carriage return or line feed.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

UNTIL String1

The optional UNTIL clause directs DCS to stop collecting characters if it receives the text
contained in the String1 argument prior to receiving a carriage return character (^M or hexa-
decimal 0x0D) or a line feed character (^J or hexadecimal 0x0A). The String1 argument may
contain wildcard characters.

EXCLUDE String2

The optional EXCLUDE clause directs DCS to exclude any characters contained in the
String2 argument from the characters it collects. DCS continues to collect and exclude char-
acters until it encounters a line feed, carriage return, or the text in the String1 argument.

String3

The String3 argument is a string variable in which DCS stores the characters it collects.

LIMIT Num

The optional LIMIT clause directs DCS to stop collecting characters after it has received a
number of characters equal to the integer in the Num argument. The LIMIT and UNTIL clauses
can work together (DCS stops collecting characters when either condition is met).

SAVECR SBoolean

The optional SAVECR clause directs DCS to store carriage returns in the collection string
based on the Boolean value of the SBoolean argument. If SBoolean is a true value, DCS will
continue collecting text when it receives a carriage return. If SBoolean is a false value, DCS
will stop collecting text when it receives a carriage return.

NOTERMINAL

The optional NOTERMINAL keyword directs DCS not to pass the collected characters to the
terminal emulation for processing. As the characters are not passed to the terminal emulation,
they are also not displayed in the session window.

Note: The NOTERMINAL keyword should be used only in cases where the input to
the COLLECT command is known. Otherwise, important terminal commands
might be lost.

If you do not use the NOTERMINAL keyword, DCS passes the collected characters to the ter-
minal emulation for processing by default. The NOTERMINAL keyword can extend the func-
tionality of a terminal emulation to include processing for a customized remote command.

3 C
om

m
ands

249

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular window in DCS.

The WINDOW clause directs DCS to collect characters in the session specified by the WinHan-
dle argument. The inclusion of this clause allows a script in DCS to collect characters from the
specified session.

Comments

If you do not include the WINDOW clause in the command, DCS collects characters in the
active session window.

By default, DCS excludes the line feed character. If you want to include line feed characters in
the collected text, you must employ the EXCLUDE clause, and the String2 argument must
contain a null string (“”).

DCS treats the COLLECT command implicitly like a WAIT command. DCS will not execute
any commands or functions following the COLLECT command until the conditions of the
COLLECT command are met.

Example

In this example:

COLLECT $0

if the incoming string is Arnold Wilson (713) 555-1234, the variable $0 assumes the value
Arnold Wilson (713) 555-1234.

In this example:

COLLECT UNTIL “.” $data

if the incoming string is Arnold Wilson .713.555.1234, the variable $Data contains the
characters “Arnold Wilson “. This string contains a space immediately after Arnold and im-
mediately after Wilson.

COLLECT, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

250

COLLECT, continued

In this example:

TABLE DEFINE 0 TEXT “MYFILE”
SET %donetime SECONDS (DATE (), 17:00:00)
WHILE SECONDS (DATE (), TIME ()) < %donetime
BEGIN
COLLECT @R0
RECORD WRITE 0
END
TABLE CLOSE 0

DCS collects each line of data coming into the session window and writes it to table zero until
5:00 P.M. At that time, the table is closed and saved to the text file MYFILE.

In this procedure:

*GETCHARS
WHEN STRING ‘^[&o’ RESUME
WAIT RESUME
;process $recv_chars
COLLECT $recv_chars NOTERMINAL
.
.
.
RETURN

all characters are passed to the terminal emulation for normal processing until the ‘ESCAPE
& o’ (hexadecimal 1B 26 6F) sequence has been received. When this sequence is received,
the WHEN STRING command is triggered, and execution passes to the COLLECT statement.
DCS then collects all characters into the string variable $recv_chars until a CR (hexadeci-
mal 0D) is received, but does not pass these characters to the terminal emulation.

3 C
om

m
ands

251

COMPILE

COMPILE Script Make Display

The COMPILE command compiles a DCS script.

Arguments

Script

The Script argument is a string specifying the name of the script to compile. You do not need
to include the DCP file extension.

Make

The optional Make argument is specified by a Boolean operand. If Make is TRUE, the
specified script is compiled only if the source script has been modified since the last compila-
tion date. If Make is FALSE, or is not included, the specified script is compiled regardless of
whether it has been modified since the last compilation.

Display

The optional Display argument is specified by a Boolean operand. If Display is TRUE,
the normal compile dialog will appear during compilation. If Display is FALSE, or is not
included, the script will be compiled without displaying the compile dialog box. If you use the
Display argument, you must also use the Make argument.

Comments

DCS will not execute any commands or functions following the COMPILE command until
DCS completely compiles the script text file.

See also the DEBUG and LINENUMBERS commands.

Example

This command:

COMPILE “tutorial”

directs DCS to compile the tutorial script. A successful compilation creates a task file named
TUTORIAL.DCT.

This command:

COMPILE “tutorial” TRUE

directs DCS to compile the file TUTORIAL.DCP only if it has been modified since the last
time it was compiled. A successful compilation creates a task file named TUTORIAL.DCT.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

252

CONCAT

CONCAT StringVar String String …

The CONCAT command concatenates (joins) an existing string with additional strings, placing the
result in the existing string variable.

Arguments

StringVar

The StringVar argument is a string variable containing the characters to which other characters
will be attached. This variable must exist before it is used as an argument in this command;
it will not be created by the CONCAT command. After the CONCAT command executes, the
variable specified as the StringVar argument will contain both its original contents and the
content of any attached strings.

String

The String argument may be either another string variable or a literal string (text within
quotes). At least one string must be included as an argument in this command in addition to
StringVar .

String …

Succeeding strings may be either string variables or string literals.

Example

$A = “Hello, “
$name = “Larry, “
CONCAT $A $name “How are you?”

This example concatenates the string variable $A, the string variable $name, and a literal
string. DCS assigns the resulting string, Hello, Larry, How are you?, to the string
variable $A.

3 C
om

m
ands

253

CONNCONFIG

CONNCONFIG String WINDOW WinHandle

The CONNCONFIG command is used to set the value of a parameter used in the connector configura-
tion for the active session.

Arguments

String

The String argument represents a single “keyword” followed by the assignment operator (=)
and a valid setting. Together, the keyword and the setting are used to configure the connector
for the active session.

Note: Configuration keywords for connectors shipped with client options, such as
SNA Server, are available only if the client option has been installed.

Keywords for Modem Valid Setting(s)

AREACODE string

PHONENUMBER string

COUNTRYCODE string

MODEMTYPE string

Keywords for Direct Serial Valid Setting(s)

STOPBITS 1, 1.5, 2

PARITY odd, even, mark, space, none

FLOWCONTROL software, hardware, none

DATABITS 4, 5, 6, 7, 8

BAUDRATE 1200, 2400, 4800, 9600, 19200,
38400, 57600, 115200

COMMPORT COM1, COM2, COM3, COM4, COM5, COM6, COM7,
COM8, COM9

PARITYCHECK 1 (true), 0 (false)

DROPDTR 1 (true), 0 (false)

Keywords for Meridian LAT32 Valid Setting(s)

SERVICENAME string

NODE string

PASSWORD string

PORT string

BLOCKIO 1 (true), 0 (false)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

254

CONNCONFIG, continued

Keywords for Telnet Valid Setting(s)

HOSTNAME string of host name, including node and socket

PORT 23

LINEMODE yes, no

BINARYMODE yes, no

TERMCUSTOM none, selected, custom

AUTORECONNECT yes, no

TERMTYPE string of terminal type

WAITDATAMARK yes, no

CRPAIRING NULL, CRLF, NONE

SOCKETPORT integer value of socket port

SERVICENAME string of service name

BREAKTYPE interrupt, telnet

NETWORKTYPE TCP, SPX

BYPASS_TIMEWAIT 1 (true), 0 (false)

Keywords for SSH Valid Setting(s)

SSHLEVEL string indicating security level (2and1, 2only, 1only)

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to apply the connector configuration settings to a particular
session window.

Comments

The keywords correspond to parameters available in the Connectors tab of the Session Prop-
erties dialog. This command, therefore, allows you to set these parameters through the DCS
script language rather than using the dialog box.

The ERROR function returns TRUE if the WinHandle or String keyword is invalid.

Note: Although the Trace Play connector is shown on the Connectors tab of the Ses-
sion Properties dialog , it cannot be configured via script.

If the Window Handle is not specified, DCS applies the connector configuration settings to
the active session window.

3 C
om

m
ands

255

Example

In this example:

%WINH = ACTIVE()
SET DEFAULTSESSIONHANDLE %WINH
SET CONNECTION “WINSOCK”
CONNCONFIG “BINARY=YES”
CONNCONFIG “DISPLAY ERRORS=NO”
CONNCONFIG “PORT=19”

the connector of the active session window is set to Winsock, and several Winsock options are
configured: binary negotiation is enabled, display error messages is disabled, and the connec-
tion port is set to 19.

Example

In this example:

SET CONNECTION "OPENSSH"
CONNCONFIG "HOSTNAME=BUBBA"
CONNCONFIG "SSHLEVEL=2ONLY"
CONNECT

the connector of the active session window is set to SSH with the SSH level set to use level "2"
security only.

CONNCONFIG, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

256

CONNECT

CONNECT SessionFile WINDOW WinHandleVar

The CONNECT command establishes a connection with a host.

Arguments

SessionFile

The optional SessionFile argument is a string specifying the path name of a session file.

WINDOW WinHandleVar

The optional WinHandleVar argument is an integer variable to which the CONNECT com-
mand assigns the window handle value of the active session window. In the multi-session
environment of DCS, the window handles of sessions can be used in a DCS script to manipu-
late any of the sessions.

Note: The WinHandleVar variable must not have been previously assigned a value
before the variable is used in the CONNECT command.

Comments

The ERROR function returns TRUE if DCS cannot establish the connection.

When DCS performs the CONNECT command on a connected session, that session’s window
will become the active window.

The CONNECT command, when used alone, will both open and connect to the session file
specified in the SessionFile argument. However, if you wish to open a session file with the
LOAD command and then use the CONNECT command to connect the session later in the
script, do not use the SessionFile argument with the CONNECT command. Instead, you must
use the SET DEFAULTSESSIONHANDLE command to specify the target session.

Note: To enable session buttons and the status bar (top or bottom), you must explic-
itly enable them by using the DISPLAYCONFIG command (with appropriate
keywords) prior to issuing the CONNECT command.

Example

In this example:

LOAD “TSOSEND1.SES”
%whnd=WINDOWHND(“TSOSEND1”)
SET DEFAULTSESSIONHANDLE %whnd
CONNECT

the session file TSOSEND1.SES is loaded before DCS attempts to connect to the host. In
this case, the default sessionhandle must be specified. The CONNECT command will connect
the session specified by the SET DEFAULTSESSIONHANDLE command.

3 C
om

m
ands

257

This example:

$Session1=”C:\DCSERIES\SETTINGS\MAIN.SES”
;sets $Session1 to session file path
CONNECT $Session1 Window %SessionHandle
;starts session configured in MAIN.SES
.
.
.
;script uses other windows...
CONNECT $Session1
;makes window of $Session1 the active window

shows a method of activating a session window after a connection has been established and
other operations performed.

CONNECT, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

258

CONTINUE

CONTINUE

The CONTINUE command branches execution to the WHILE command of a WHILE loop, and evalu-
ates the Boolean argument.

Arguments

The CONTINUE command takes no arguments.

Comments

The CONTINUE command may only be executed from within the command block of a
WHILE loop.

If the Boolean evaluates to FALSE, execution branches past the end of the WHILE loop with-
out executing the command block. If the Boolean evaluates to TRUE, execution resumes at
the first command of the command block.

Example

In this example:

SET %ctr 0
WHILE %ctr < 10
BEGIN
RECORD READ 0
INCREMENT %ctr
IF %ctr % 2 = 0
CONTINUE
DISPLAY “Record “ | STR %ctr | @R0
END

DCS reads ten records from Table 0 (zero) and displays only the odd numbered records. If the
record number is even (the modulus of %ctr with respect to two equals zero), the CON-
TINUE command branches execution back to the WHILE command. The Boolean argument is
again tested, and the next record is displayed if %ctr is less than ten.

3 C
om

m
ands

259

CREATE DIRECTORY

CREATE DIRECTORY Path

The CREATE DIRECTORY command creates the specified directory.

Arguments

Path

The Path argument is a string specifying the path of the directory to be created.

Comments

If the directory already exists, or if the subdirectories leading to the directory do not exist, the
CREATE DIRECTORY command fails and the ERROR function returns TRUE.

Example

This script segment:

$TASKDIR = “C:\DCSERIES\TASK”
CREATE DIRECTORY $TASKDIR
SET DIRECTORY TASK $TASKDIR

creates the TASK directory n the DCSERIES directory on the C: drive and then sets the
TASK directory as the default directory for the storage of script task files. However, if the
DCSERIES directory does not exist or if the TASK directory already exists, the CREATE
DIRECTORY command does not create a TASK directory.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

260

(DDE) ACCESS

ACCESS Server Topic ChannelVar DDEList

The (DDE) ACCESS command initiates a DDE conversation between DCS and another Windows
application (including another instance of DCS).

Arguments

Server
The Server argument is a string specifying the name of the server application.

Topic
The Topic argument is a string, in the server’s terms, specifying the topic for the DDE conver-
sation.

ChannelVar
The optional ChannelVar argument is an integer variable into which DCS stores a DDE
channel identifier. The result assigned to this variable is interpreted according to the following
table:

Result Indication

 0 No response

-1 An error occurred in establishing the conversation

-n n multiple responses were received

 n A single conversation established, and n (an integer) is the channel identifier

If you do not include the ChannelVar argument, DCS can maintain only one DDE conver-
sation at a time. If multiple DDE conversations are taking place, all DDE commands must
refer to a proper channel number to ensure that they are communicating in the correct DDE
conversation.

DDEList

The optional DDEList argument is a string variable into which each channel number is stored
if DCS receives multiple responses (ChannelVar = -n). It is in the following format: “chan-
nel1, channel2, ...” If ChannelVar contains a value of 0, -1, or n, the DDEList argument will
contain a null string.

Comments

The ERROR function returns TRUE if DCS could not establish a DDE conversation.

3 C
om

m
ands

261

Example

In this example:

ACCESS “EXCEL” “EXPENSES.XLS” %channel
IF %channel <=0
BEGIN
DISPLAY (0,0) “Cannot establish conversation”,
CANCEL
END
PERFORM dde_begin

DCS attempts to initiate a DDE conversation with Excel, using the EXPENSES.XLS work
sheet as the topic. If the attempt fails (%Channel = 0, -1, or -n), the string “Cannot establish
conversation” is displayed in the session window and execution cancels. If the attempt is suc-
cessful, the routine labeled dde_begin is performed.

(DDE) ACCESS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

262

(DDE) ACCESS CANCEL

ACCESS CANCEL Channel

The (DDE) ACCESS CANCEL command terminates the active DDE conversation.

Arguments

Channel

The optional Channel argument is an integer specifying the channel value returned by the
(DDE) ACCESS command. DCS does not require the Channel argument if only one DDE
conversation is taking place.

Comments

If the Channel argument is not included during a session with multiple DDE conversations,
DCS terminates all DDE conversations. However, DCS terminates only those conversations
spawned by the script containing this command.

Example

In this example:

ACCESS “EXCEL” “EXPENSES.XLS”
IF ERROR ()
BEGIN
DISPLAY (0,0) “Cannot Access Excel”
CANCEL
END
PERFORM dde_request
PERFORM dde_poke
ACCESS CANCEL
ACCESS “EXCEL” “SYSTEM”

a DDE conversion is initiated with Excel. If the initiation is successful, routines are performed
that request data from, and poke data to, Excel. When these routines are complete, the DDE
channel is terminated before another DDE channel is initiated.

3 C
om

m
ands

263

(DDE) INSTRUCT

INSTRUCT Channel Command, ...

The (DDE) INSTRUCT command sends a string of commands to a DDE server. Once the commands
have been sent, DCS waits for acknowledgment.

Arguments

Channel

The optional Channel argument is an integer specifying the channel value returned by the
(DDE) ACCESS command. DCS does not require the Channel argument if only one DDE
conversation is taking place.

Command, ...

The Command argument is a string specifying a list of instructions in the server’s terms for the
server to perform.

Comments

The ERROR function returns TRUE if the server could not perform the request.

Example

In this example:

ACCESS “EXCEL” “SYSTEM”
INSTRUCT ‘[OPEN(“C:\BUDGET.XLS”)]’

a DDE conversation is established with Excel that accesses the system. Excel then opens the
BUDGET.XLS work sheet.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

264

(DDE) POKE

POKE Data TO Channel Item

The (DDE) POKE command sends the specified data to the server in a DDE conversation and then
waits for acknowledgment.

Arguments

Data

The Data argument is a string specifying the data to send, in the server’s terms. If the string
contains multiple fields of data, they should be tab delimited.

TO Channel Item

The TO clause specifies the destination of the data. The optional Channel argument is an in-
teger specifying the channel value returned by the (DDE) ACCESS command. DCS does not
require the Channel argument if only one DDE conversation is taking place.

The Item argument is a string specifying the desired data item.

Comments

You can use the (DDE) POKE command instead of the (DDE) TABLE SEND command when
sending a single data item.

Example

In this example:

COLLECT $data
ACCESS “EXCEL” “EXPENSES.XLS” %channel
POKE $data TO %channel “R1C1”
ACCESS CANCEL %channel

a line of data coming into the session window is collected and sent to row 1, column 1, of the
Excel spreadsheet EXPENSES.XLS.

3 C
om

m
ands

265

(DDE) REQUEST

REQUEST DataVar FROM Channel Item

The (DDE) REQUEST command requests that data received from a server in a DDE conversation be
placed in the specified variable, then waits for acknowledgment.

Arguments

DataVar

The DataVar argument is a string variable into which the requested data is stored.

FROM Channel Item

The FROM clause specifies the source of the requested data. The optional Channel argument
is an integer specifying the channel value returned by the (DDE) ACCESS command. DCS
does not require the Channel argument if only one DDE conversation is taking place.

Item

The Item argument is a string identifying a data item.

Comments

You may use the (DDE) REQUEST command instead of the (DDE) TABLE REQUEST com-
mand when only a single data item is needed.

During a DDE session between two instances of DCS, the (DDE) TABLE REQUEST com-
mand must be used to request data because DCS replies to requests via tables.

Example

In this example:

ACCESS “EXCEL” “BUDGET.XLS” %channel
REQUEST $totals FROM %channel “R1C1”
SET @R0 $totals
RECORD WRITE 0

the contents of row one, column one, of the Excel spreadsheet BUDGET.XLS are written to
Table 0 (zero).

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

266

(DDE) TABLE REPLY

TABLE REPLY StrucTableNum TO Channel Item

The (DDE) TABLE REPLY command sends the contents of a structured table in response to a DDE
request (either an advise or a request) for data from the client, and then waits for acknowledgment.

Arguments

StrucTableNum

The StrucTableNum argument is an integer (from 0 to 15) specifying the number of a struc-
tured table containing the data to be sent.

TO Channel Item

The TO clause specifies the destination (in the client’s terms) of the exported data. The op-
tional Channel argument is an integer specifying the channel value returned by the (DDE)
WHEN INITIATE command. DCS does not require the Channel argument if only one DDE
conversation is taking place.

The Item argument is a string identifying the requested data item.

Comments

The ERROR function returns TRUE if the operation is unsuccessful.

Example

These commands:

WHEN POKE 0 TABLE 0 “item1”
BEGIN
TABLE REPLY 0 TO “POKE1”
END

WHILE TRUE
BEGIN
WAIT SIGNAL
END

service a (DDE) POKE from a DDE client on the topic POKE1.

3 C
om

m
ands

267

(DDE) TABLE REPLY, continued

In this example:

WHEN REQUEST 0 “item0”
BEGIN
DISPLAY (0,0) “Request Activated”
TABLE LOAD 0 FROM “DATA1” AS SYLK
IF ERROR ()
BEGIN
DISPLAY “Can’t load table”
CANCEL
END
TABLE REPLY 0 TO “item0”
END

when DCS receives a data request from the DDE client on item0, DCS displays “Request
Activated” in the session window, then loads the necessary data into structured Table 0
(zero) and sends the data to the client.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

268

(DDE) TABLE REQUEST

TABLE REQUEST StrucTableNum FROM Channel Item AS Format

The (DDE) TABLE REQUEST command requests data from the DDE server, places the data into a
structured table, and then waits for acknowledgment.

Arguments

StrucTableNum

The StrucTableNum argument is an integer (from 0 to 15) specifying the number of a struc-
tured table into which data is placed.

FROM Channel Item

The FROM clause specifies the source of the requested data (in the server’s terms). The optional
Channel argument is an integer specifying the channel value returned by the (DDE) WHEN
INITIATE and (DDE) ACCESS commands. DCS does not require the Channel argument if
only one DDE conversation is taking place.

The Item argument is a string identifying the requested data item.

AS Format

The AS clause specifies the format in which to store the imported data. The Format argument
is specified by one of the following keywords:

DIF SYLK TEXT

Comments

The ERROR function returns TRUE if the server could not perform the request.

Example

In this example:

ACCESS “EXCEL” “BUDGET.XLS”
DISPLAY (0,0) “DATA REQUEST 0: “
TABLE REQUEST 0 FROM “item0” AS SYLK
IF ERROR ()
DISPLAY “Request denied”
ELSE
DISPLAY (0,5) “Request Successful”

DCS initiates a DDE conversation with Excel and requests data from the BUDGET.XLS
work sheet using item0 as the topic.

3 C
om

m
ands

269

(DDE) TABLE SEND

TABLE SEND StrucTableNum TO Channel Item AS Format

The (DDE) TABLE SEND command allows DCS to act as a DDE client. The command sends the con-
tents of a structured table to the server in a DDE conversation and then waits for acknowledgment.

Arguments

StrucTableNum

The StrucTableNum argument is an integer (from 0 to 15) specifying the number of a struc-
tured table containing the data to be sent.

TO Channel Item

The TO clause specifies the destination, in the server’s terms, of the exported data. The optional
Channel argument is an integer specifying the channel value returned by the (DDE) ACCESS
command. DCS does not require the Channel argument if only one DDE conversation is
taking place.

The Item argument is a string identifying the requested data item.

AS Format

The AS clause specifies the standard data format in which to send the exported data. The For-
mat argument is specified by one of the following keywords:

DIF SYLK TEXT

Comments

The ERROR function returns TRUE if the server could not perform the request.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

270

(DDE) WAIT SIGNAL

WAIT SIGNAL

The (DDE) WAIT SIGNAL command pauses script execution until DCS receives the next DDE request
from a client.

Arguments

The (DDE) WAIT SIGNAL command takes no arguments.

Comments

In order to process the entire current DDE request without interruption from the next incom-
ing DDE request, DCS disables all incoming DDE requests while executing this command.

Any series of (DDE) WHEN commands intended to fulfill a DDE service request must end
with this command.

Example

These commands:

WHEN POKE 0 TABLE 0 “item0”
PERFORM poke0

WHEN POKE 1 TABLE 1 “item1”
PERFORM poke1

WHEN TERMINATE,
BEGIN
DISPLAY “(0,0) DDE link terminated”
CANCEL
END

WHILE TRUE
WAIT SIGNAL

prepare DCS to service an incoming (DDE) POKE from the DDE client. An infinite loop is
established so that DCS waits to receive an incoming POKE each time execution returns from
either the poke0 or poke1 routines. Execution terminates when DCS receives a terminate
message from the client.

3 C
om

m
ands

271

(DDE) WHEN ADVISE

WHEN ADVISE Index Channel Item Command

The (DDE) WHEN ADVISE command prepares DCS to service a DDE request to send continuous
updates on a particular data item. DCS must be in a wait state to service a request.

Arguments

Index

The Index argument is an integer (from 0 to 16) specifying the command identifier. It allows
multiple (DDE) WHEN ADVISE commands to be active at the same time. DCS may have a
maximum of 16 (DDE) WHEN ADVISE commands active at the same time.

Index argument 16 is a unique index. When DCS receives an ADVISE message, it will look
through indexes 0 through 15 first. If no corresponding WHEN ADVISE message is found, the
message is placed in the Item string specified with the command. For example, the script line:

WHEN ADVISE 16 $item DISPLAY “ADVISE—Unknown item, \
“ | $item | “^M”

signals any unknown message, displaying only those which were not found in the first 16
indexes (0 through 15).

Channel

The optional Channel argument is an integer specifying the channel value returned by the
(DDE) WHEN INITIATE command. DCS does not require the Channel argument if only one
DDE conversation is taking place.

Item

The Item argument is a string identifying, in the client’s terms, the requested data item.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN ADVISE command executes the logical command.

Comments

The (DDE) WHEN ADVISE command is activated when DCS receives either an advise message
(ADVISE is set to TRUE) or an unadvise message (ADVISE is set to FALSE), and the data item
requested matches the value of the Item argument.

DCS determines if the (DDE) WHEN ADVISE command was activated by an advise or an un-
advise message with the ADVISE function. Script commands issued to fulfill an advise request
should be disabled when an unadvise message is received.

Client requests for data should be fulfilled using the (DDE) TABLE REPLY command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

272

Example

In this example:

TABLE DEFINE 3 FIELDS CHAR 20
WHEN ADVISE 0 “item0”
PERFORM advise

WHILE TRUE
WAIT SIGNAL

*advise
IF NOT ADVISE
BEGIN
DISPLAY (0,0) “Advise canceled by client”
WHEN CANCEL SCREEN 0
RETURN
END

WHEN SCREEN 0 (24 10 1)
BEGIN
PERFORM grabItem0 (3)
TABLE REPLY 3 TO “item0”
END
RETURN

by executing an ADVISE command, the client requests DCS to send an update whenever
the specified data item is modified. You must establish criteria to determine when an update
should be sent.

In this example, the script looks for a particular region of the screen to be modified, indicat-
ing that there is updated information to send to the client with the (DDE) TABLE REPLY
command. When DCS receives an unadvise message, the string “Advise canceled by
client” is displayed in the session window and the WHEN SCREEN command is canceled.

(DDE) WHEN ADVISE, continued

3 C
om

m
ands

273

(DDE) WHEN EXECUTE

WHEN EXECUTE Channel CommandVar Command

The (DDE) WHEN EXECUTE command prepares DCS to service an execute request from the DDE
client. DCS must be in a wait state to service the request.

Arguments

Channel

The optional Channel argument is an integer variable specifying the channel value returned by
the (DDE) WHEN INITIATE command. DCS does not require the Channel argument for only
one DDE conversation.

CommandVar

The CommandVar argument is a string variable which stores the command specified by the
client.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN EXECUTE command executes the logical command.
The command established in this argument should branch execution according to the result
returned in the CommandVar argument.

Comments

Since DCS’s script language is compiled, the DDE client cannot directly add functionality to
a compiled script. Commands sent from the server must be parsed through script. Routines
should be established that will branch execution according to the command sent.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

274

(DDE) WHEN EXECUTE, continued

Example

In this example:

WHEN INITIATE %ch PERFORM dde_initiate

WHEN EXECUTE %ch $command
PERFORM dde_parse_cmd

WHEN TERMINATE
BEGIN
DISPLAY ‘DDE ended’
RETURN
END

WHILE TRUE
WAIT SIGNAL
CANCEL

*dde_parse_cmd
DISPLAY $command
IF $command = “WINDOW STACK”
WINDOW STACK
ELSE
IF $command = “CLEAR SCREEN”
CLEAR SCREEN
ELSE
IF $command = “LAUNCH ‘PAINT.EXE’”
LAUNCH “PAINT.EXE”
ELSE
RETURN

a series of nested IF commands determine which action is performed, depending on the con-
tents of the $command variable.

3 C
om

m
ands

275

(DDE) WHEN INITIATE

WHEN INITIATE ChannelVar Command

The (DDE) WHEN INITIATE command is activated when DCS is in a wait state and a new DDE
conversation is established.

Arguments

ChannelVar

The optional ChannelVar argument is a numeric variable into which DCS will store a DDE
channel identifier generated by the client.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN INITIATE command executes the logical command.

Comments

DCS is in a wait state after DCS has executed a WAIT command and before the condition of
the WAIT command is fulfilled.

Example

In this example:

WHEN INITIATE PERFORM dde_initiate
WHEN ADVISE PERFORM dde_advise
WHEN TERMINATE DISPLAY ‘DDE ended’, RETURN

WHILE TRUE
WAIT SIGNAL

DCS prepares to perform the routine dde_initiate when a DDE conversation is estab-
lished. DCS then pauses execution at the (DDE) WAIT SIGNAL command, waiting for a DDE
initiate message. Once received, execution returns to the (DDE) WAIT SIGNAL command,
while DCS waits to receive an advise message.

Each time DCS receives an advise message, it performs the dde_advise routine and then
returns to the (DDE) WAIT SIGNAL command until the DDE conversation is terminated.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

276

(DDE) WHEN POKE

WHEN POKE Index TABLE Table Channel Item Command

The (DDE) WHEN POKE command prepares DCS to service a DDE request message from the client
to receive a particular data item. DCS must be in a wait state to service the request. Received data is
placed in the specified table.

Arguments

Index

The Index argument is an integer (from 0 to 16) specifying the command identifier. It allows
multiple (DDE) WHEN POKE commands to be active and to access the same table at the same
time. DCS may have a maximum of 16 (DDE) WHEN POKE commands active at one time.

Index argument 16 is a unique index. When DCS receives a POKE message, it will look
through indexes 0 through 15 first. If no corresponding WHEN POKE message is found, the
message is placed in the Item string specified with the command. For example, the script line:

WHEN POKE 16 $item DISPLAY “POKE—Unknown item, “\
 | $item | “^M”

signals any unknown message, displaying only those which were not found in the first 16
indexes (0 through 15).

With Index 16, the Item string may be used as the switch variable for the SWITCH command.
Since the SWITCH command compares the switch variable to an unlimited number of case
statements, you can effectively handle more than 16 messages. See the DDE Server example.

TABLE Table

The TABLE clause specifies the table in which to place the data. The Table argument is an
integer (from 0 to 15) specifying the table number.

Channel

The optional Channel argument is an integer specifying the channel value returned by the
(DDE) WHEN INITIATE command. DCS does not require the Channel argument if only one
DDE conversation is taking place.

Item

The Item argument is a string identifying, in the client’s terms, the requested data item.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN POKE command executes the logical command.

3 C
om

m
ands

277

Comments

When DCS receives a poke message, and the data item requested matches the value of the
Item argument, the (DDE) WHEN POKE command is activated.

Example

See the (DDE) WAIT SIGNAL command.

(DDE) WHEN POKE, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

278

(DDE) WHEN REQUEST

WHEN REQUEST Index Channel Item Command

The (DDE) WHEN REQUEST command prepares DCS to service a DDE request for a particular data
item. DCS must be in a wait state to service this request.

Arguments

Index

The Index argument is an integer (from 0 to 16) specifying the command identifier. It allows
multiple (DDE) WHEN REQUEST commands to be active at the same time. DCS may have a
maximum of 16 (DDE) WHEN REQUEST commands active at one time.

Index argument 16 is a unique index. When DCS receives an REQUEST message, it will look
through indexes 0 through 15 first. If no corresponding WHEN REQUEST message is found,
the message is placed in the Item string specified with the command. For example, the script
line:

WHEN REQUEST 16 $item DISPLAY “REQUEST—Unknown item, \
“ | $item | “^M”

signals any unknown message, displaying only those which were not found in the first 16
indexes (0 through 15).

Channel

The optional Channel argument is an integer specifying the channel number returned by the
(DDE) WHEN INITIATE command. DCS does not require the Channel argument if only one
DDE conversation is taking place.

Item

The Item argument is a string identifying, in the client’s terms, the requested data item.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN REQUEST command executes the logical command.

Comments

When DCS receives a request message, and the data item requested matches the value of the
Item argument, the (DDE) WHEN REQUEST command is activated.

DCS is in a wait state after DCS has executed a WAIT command and before the condition
of the WAIT command is fulfilled. Client requests for data should be filled using the (DDE)
TABLE REPLY command.

3 C
om

m
ands

279

(DDE) WHEN REQUEST, continued

Example

In this example:

TABLE DEFINE 0 FIELDS INT 10 INT 10
WHEN REQUEST 0 “item0”
BEGIN
DISPLAY (0,0) “Request activated”
TABLE REPLY 0 TO “item0”
IF ERROR ()
BEGIN
DISPLAY (1,0) “Reply failed”
END
END
WHILE TRUE
WAIT SIGNAL

DCS prepares to service a request from the client. When the request is received, a message is
displayed in the session window. DCS fills this request using the (DDE) TABLE REPLY com-
mand and execution returns to the (DDE) WAIT SIGNAL command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

280

(DDE) WHEN TERMINATE

WHEN TERMINATE Channel Command

The (DDE) WHEN TERMINATE command is used when DCS is acting as a DDE server or a DDE
client. It is activated when DCS is in a wait state and the current DDE conversation is terminated.

Arguments

Channel

The optional Channel argument is an integer specifying the channel number returned by the
(DDE) WHEN INITIATE command (DCS acting as a server) or (DDE) ACCESS command
(DCS acting as a client). DCS does not require the Channel argument if only one DDE con-
versation is taking place.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the (DDE) WHEN TERMINATE command executes the logical command.

Example

See the (DDE) WAIT SIGNAL command.

3 C
om

m
ands

281

DEBUG

DEBUG FileName

As each command or function executes, the DEBUG command writes the command or function to a
file to aid you in solving problems with a script.

Arguments

FileName

The FileName argument is a string naming the file to which DCS writes the output. The file
name may be up to twelve characters long (including the path, name, period and extension)
and must specify a valid file name for your system. For best results, create the debug file in a
root directory (e.g., c:\debug.txt).

If the file does not exist, DCS will create the file before it executes the DEBUG command and
will place the file into the task directory of the executing script. If the file exists prior to the
execution of the DEBUG command, DCS will delete the previous contents of the file before
executing the command.

If you use a question mark (?) for the FileName argument, and if the SHOW command fol-
lows the DEBUG command, DCS will enter step mode. While in step mode, DCS displays the
currently executing command in the Script Compiler dialog. This dialog also contains a Stop
button and a Pause or Resume button.

Comments

DCS stops placing text in the debug file, when it encounters the NOSHOW command, and
will resume writing text to the file when it encounters the SHOW command. You can strategi-
cally place the SHOW and NOSHOW commands in a script to allow you to debug portions of
a script rather than all of it.

DCS executes only the first DEBUG command it encounters in a script. It ignores any subse-
quent DEBUG commands in the script, or in the subroutines the script may execute.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

282

Example

In this example:

DEBUG “DATAREAD.BUG”
SHOW

*begin_read
RECORD READ 0 at 0
WHILE NOT EOF ()
BEGIN
DISPLAY @R0.1 | “ - “ | @R0.5
RECORD READ 0
END
PERFORM end_read

*end_read
DISPLAY “End of file reached”
NOSHOW
CANCEL

the DEBUG command will write its output to the file BUGFILE. When the SHOW com-
mand executes, DCS begins collecting the commands and functions as they execute, copying
each script line to BUGFILE. Each time the commands between the label *begin_read
and the line DISPLAY @R0.1 | “ - “ | @R0.5 execute, DCS adds them to the
debug file. When the end of the file is reached, script execution branches to the *end_read
label. The script line DISPLAY “End of file reached” executes and is written to the
debug file. The NOSHOW command executes, and any further commands executed are not
written to BUGFILE.

DEBUG, continued

3 C
om

m
ands

283

DECREMENT IntVar

The DECREMENT command decreases the value of the specified numeric variable by one.

Arguments

IntVar

The IntVar argument specifies the integer variable to be affected.

Comments

An integer variable must be specified (a real variable will generate a syntax error).

Example

In this example:

SET %num 10
WHILE % num > 0
BEGIN
RECORD READ 0
DISPLAY (%num, 0) @R0
DECREMENT %num
END

the command DECREMENT %num is used as a counter so that exactly ten records are read
and displayed.

DECREMENT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

284

DIAL

DIAL PhoneNum RETRY Retries DELAY RetryDelay

The DIAL command directs the modem to dial a phone number. It is equivalent to selecting Connect
on the Session menu when using the Modem (TAPI) connector.

Note: The DIAL command does not apply to IBM TN3270 emulations.

Arguments

PhoneNum

The optional PhoneNum argument is a string specifying the phone number to dial. If it is not
included, the modem dials the phone number specified in the active session file. If no phone
number is specified in the active session file, the modem dials the phone number specified in
the last SET PHONENUMBER command. If no SET PHONENUMBER command has been
executed DCS will return an error (since it does not have a phone number to dial).

RETRY Retries

The optional RETRY clause directs DCS to redial the specified phone number if the connec-
tion is initially unsuccessful. If it is not included, the phone number is redialed according to
the active session file. The Retries argument is a numeric specifying the number of times to
dial. Setting the value of Retries to -1 directs DCS to continuously redial until a successful
connection is made.

DELAY RetryDelay

The optional DELAY clause determines the amount of time for DCS to wait to make a suc-
cessful connection before retrying to dial. If it is not included, the retry delay is determined
by the active session file, where the default value is 30 seconds. The RetryDelay argument is a
numeric specifying the delay in seconds.

If you include the DELAY clause, you must also include the RETRY clause.

Comments

If different phone number settings are specified in the active session file, the DIAL command
temporarily overrides these settings, but does not modify the session file.

Due to the way the Windows TAPI operates (with its parameters separated and specific rules
for dialing), problems may arise when the area code and/or country code parameters are
defined in the TAPI configuration, and then also defined in the DIAL command. To avoid
these problems, set the area code, country code and phone number using the CONNCONFIG
command and then use the DIAL command without any parameters. See the CONNCONFIG
command for the valid keyword parameters for the Modem connector.

DCS treats the DIAL command like the Connect option in the Session menu. For example, if
DCS has connected to another computer, executing the DIAL command will have no effect.

3 C
om

m
ands

285

DIAL, continued

Examples

This example:

WINDOW OPEN SETTINGS “” %HWND
SET DEFAULTSESSIONHANDLE %HWND
SET CONNECTION “TAPI”
CONNCONFIG “AREACODE=281”
CONNCONFIG “PHONENUMBER=555-5555”

DIAL

directs DCS to set the areacode and phone number parameters in the session file and then dial.

In this example:

LOAD “COMPUSER.SES”
IF CONNECT ()
BEGIN
SEND “/off”
HANGUP
END

DIAL “555-1234” RETRY 3
WAIT STRING “>”
SEND NOCR “^M”
WAIT STRING “ID:”
SEND “secretid”

DCS loads a session file named COMPUSER.SES. DCS then checks to see if it is presently
connected and, if so, logs off and hangs up. DCS then dials the specified phone number, waits
for the expected prompts and sends the necessary responses.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

286

DIALOG

DIALOG (x, y, w, h) Title SYSMENU SBoolean MODAL MBoolean NOFOCUS
FBoolean

 DialogIndex
 Option
 Option…

DIALOG END

The DIALOG command creates custom dialog boxes prompting your interaction with DCS. One or
more dialog options may follow the DIALOG command. A DIALOG END command indicates the end
of the dialog box definition and must follow the DIALOG command and the dialog options.

Note: Dialog boxes in the script language are governed in most cases by the operating system
(Windows 95/98/NT). Therefore, settings which affect the display of dialog boxes in
Windows will also affect those dialogs created with the script language. For example, if
the display settings are set to Large Fonts, scripted dialog boxes will use large fonts and,
as a result, be larger than dialog boxes displayed when Windows is using Small Fonts.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the desired position and size of the dialog box.
It indicates the top left corner (x, y), width (w), and height (h). The coordinates are specified as
logical units:

 Horizontally, there are four logical units per character

 Vertically, there are eight logical units per line.

The (x, y) coordinates for a dialog box are relative to the top left corner of the application
window, which is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Dialog box coordinates are intended to be machine-independent and are, therefore, defined in
terms of system character and line widths, instead of pixels. This allows for the best appearance
of a dialog on different types of machines and monitors.

Title

The optional Title argument is a string which will appear in the title bar of the dialog box.
DCS will also include a Control, or System, menu with the title bar. If you do not include
the Title argument and do not include the SYSMENU clause (or if you have included the
SYSMENU clause with a false Boolean value as its argument), DCS will not display a title bar
(or a title) for the dialog box. When you define dialog boxes with the Title argument, you can
move the dialog box around the screen by dragging the title bar. If the Title argument contains
a null string (“”), the dialog box appears with a blank title bar.

3 C
om

m
ands

287

The SYSMENU, MODAL , and NOFOCUS clauses are order-dependent; however, you do not
have to include all three clauses in the command. For example, if you include the SYSMENU
and NOFOCUS clauses, but not the MODAL clause, the NOFOCUS clause must follow the
SYSMENU clause.

SYSMENU SBoolean

The optional SYSMENU clause controls the display of the dialog box’s control menu. The
SYSMENU clause is incompatible with the MODAL clause. The optional SBoolean argument
is a Boolean value.

If you do not include the SBoolean argument with the SYSMENU clause, or if SBoolean
evaluates to a true Boolean value, DCS will create a dialog box with a control menu. If you
include the SBoolean argument and it evaluates to a false Boolean value, the dialog box will
not have a control menu.

MODAL MBoolean

The optional MODAL clause allows you to specify whether a dialog box is a non-modal or a
modal dialog. If you do not include the MODAL clause, the DIALOG command will define a
non-modal dialog. When a dialog box is non-modal, you are allowed to select options outside
of the dialog box (like the menus or windows in DCS or other Windows applications). How-
ever, if you include the MODAL clause, you are not allowed to select any options outside of the
dialog box (or possibly in any other application), until the script cancels the dialog box. Usu-
ally, you must interact with some option in the dialog box in order to cancel the dialog.

The MODAL clause and its optional MBoolean argument can make a dialog box either ap-
plication modal or system modal. If the dialog box is an application-

modal dialog box, you are allowed to interact with other applications, but you are not allowed
to interact with other options in DCS, until the script cancels the dialog box. If the dialog box
is a system-modal dialog, you are not allowed to interact with any other application or any
other option in DCS, until the script cancels the dialog box.

The MBoolean argument is an optional argument to the MODAL clause and is a Boolean
value. The MODAL clause will create an application modal dialog box when you do not in-
clude the MBoolean argument or when the MBoolean argument evaluates to a false Boolean
value. If the portion of the script dealing with an application modal dialog box has an error in
its logic, the Script menu (and other DCS menus) might become inaccessible.

The MODAL clause will create a system modal dialog box when you include the MBoolean
argument and it evaluates to a true Boolean value. If the portion of the script dealing with a
system modal dialog box has an error in its logic, the Program Manager (and other applica-
tions) might become inaccessible.

NOFOCUS FBoolean

The optional NOFOCUS clause determines whether the dialog box will become the active
window when initially displayed. When a dialog or window is active, it has a highlighted
title bar and border; other open windows or dialogs will have dimmed title bars and borders.
The optional FBoolean argument is a Boolean value. If you do not include the FBoolean

DIALOG, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

288

DIALOG, continued

argument, or if it evaluates to a false Boolean value, the NOFOCUS clause will create a dialog
and make it the active window. When you include the FBoolean argument, and the argu-
ment evaluates to a true Boolean value, the dialog box created will not be the active window.
When you click the mouse button in the dialog box, DCS will make the dialog box the active
window.

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) identifying a particular
dialog box. If it is not included, DCS uses zero as the default value. If two dialog boxes in the
same script have an identical DialogIndex value, DCS will destroy an existing dialog box in
favor of a newly created dialog box.

Option

Each Option argument is actually another script command which specifies a dialog control or
command. Dialog controls are either active or static. You are allowed to select an active control
in a dialog box, but not a static control. Static controls only display information; they are not
interactive. The following are the valid script commands for dialog boxes:

BUTTON ICON LISTBOX RADIOBUTTON

CHECKBOX ICONBUTTON MESSAGE RADIOGROUP

EDITTEXT GROUPBOX PICURE WIDEBUTTON

Comments

DCS treats active dialog box controls like WHEN commands.

The following limitations apply to dialog box controls:

Control Maximum Quantity

Total Controls in a Dialog Box 255

Total Buttons, Wide Buttons, & Icon Buttons 128

Total Check Boxes 16

Total Edit Text Boxes 64

Total List Boxes 10

Total Pictures 1

Total Radio Groups 16

You may include a maximum of 255 controls per dialog box; however, the amount of avail-
able memory in your computer and design considerations (such as the practicality and ease
of interacting with a dialog) might limit the number of controls you put into a dialog box to
fewer than 255.

DCS can display more than one dialog box at a time. DCS will stop displaying a dialog box
when a script encounters one of the following: the DIALOG CANCEL command, the end of
the script, or the DIALOG command using a DialogIndex identical to that of a dialog box
currently displayed.

When you create a dialog box with the DIALOG command, you can close the dialog in a num-

3 C
om

m
ands

289

ber of ways. Consider the following script segment:

DIALOG
Button “Cancel” Resume
DIALOG END
WAIT RESUME
DIALOG CANCEL

This dialog box will disappear when you click the button titled Cancel. However, if you
want to close a dialog box through its control menu or through the [ALT]+[F4] key combina-
tion, you must add a title bar to the dialog box and must add the CANCEL keyword to one of
the buttons that you define for the dialog box. The following script segments are based on the
previous script sample:

DIALOG “The Title of the Dialog Box”
BUTTON CANCEL “Cancel” RESUME
DIALOG END
Wait Resume
DIALOG CANCEL

or

DIALOG SYSMENU
Button CANCEL “Cancel” Resume
DIALOG END
WAIT RESUME
DIALOG CANCEL

In these examples, you can close the dialog box by selecting the Cancel button in the dialog
box, by entering the [ALT]+[F4] key combination, by entering the [ESC] key (adding the
CANCEL keyword allows you to use the [ESC] key), by selecting the Close option in the
control menu of the title bar, or by double-clicking on the control menu.

The control menu will only appear in a dialog if you include the Title argument or the SYS-
MENU clause (the SYSMENU keyword only or the keyword with a true value for the SBool-
ean argument); however, if you want the control menu in the dialog box, but you do not want
text in the title bar, compose the Title argument as a null string (“”) or include the SYSMENU
clause without the Title argument.

DIALOG, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

290

Example

This script segment:

DIALOG “Hello” SYSMENU FALSE MODAL TRUE NOFOCUS \
TRUE MESSAGE “Please respond!!”
BUTTON DEFAULT “&OK” RESUME
DIALOG END
WAIT RESUME
DIALOG CANCEL

displays a dialog box that requires a response before performing other actions on the PC.

For other examples, see each individual dialog box command following this section.

DIALOG, continued

3 C
om

m
ands

291

(DIALOG) BUTTON

BUTTON (x, y, w, h) Default Title Command

The (DIALOG) BUTTON dialog control command displays a button control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the button. The coordinates are in logical units. See the DIALOG command to
determine the proper logical unit dimensions for your system. The (x, y) coordinates are rela-
tive to the dialog box which contains the button. The top left corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Default

The optional Default argument is specified by one of the following two keywords:

Keyword Action

DEFAULT Allows the button to be automatically clicked when the [RETURN] key is
pressed, unless another button is highlighted.

CANCEL Causes the button to be automatically clicked when the [ESC] key is
pressed, regardless of which button is highlighted.

A default button is displayed in the dialog box with a black border. Only one DEFAULT but-
ton may be specified per dialog box.

Title

The Title argument is a string specifying the characters to display on the button.

Preceding a character in the Title argument by an ampersand (&) causes the character to ap-
pear underlined on the button. The button can then be clicked by pressing the [ALT] key and
the key of the underlined character simultaneously.

Command

The optional Command argument specifies a logical command (either a single command or
a command block). Clicking the button executes the logical command. If a command is not
included, clicking the button has no effect.

Comments

A button is an active control. You may include a maximum of 128 buttons (including buttons,
icon buttons, and wide buttons) in a single dialog box.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

292

Example

Dialog
CHECKBOX 0 “Initially Unchecked”
BUTTON (,,38,15) “1st Button” RESUME
BUTTON (,,38,15) DEFAULT “Default” RESUME
Dialog End

Wait Resume
DIALOG CANCEL

(DIALOG) BUTTON, continued

3 C
om

m
ands

293

DIALOG CANCEL

DIALOG CANCEL DialogIndex

The DIALOG CANCEL command removes the active dialog box from the screen.

Arguments

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) identifying a particular dialog
box. If it is not included, DCS uses zero as the default value.

If you specify a value of -1, the DIALOG CANCEL command will remove all existing dialogs
created by the script in which the command appears.

Comments

DCS removes a dialog box from the screen when script execution ends, or upon executing a
DIALOG CANCEL command.

Example

In this example:

DIALOG
MESSAGE “Preparing for Text Capture...”
BUTTON DEFAULT “Continue” RESUME
BUTTON CANCEL “Abort” CANCEL
DIALOG END
WAIT RESUME
DIALOG CANCEL
PERFORM text_receive

the DIALOG CANCEL command removes the dialog box from the screen before the text trans-
fer begins, enabling you to see the entire session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

294

(DIALOG) CHECKBOX

CHECKBOX (x, y, w, h) Default CheckBoxText Command

The (DIALOG) CHECKBOX dialog control command displays a check box control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the check box (box and text). Specifying a width and height for a check box will
not actually change the size of the check box, but will restrict or enlarge the space allocated
to the display of the check box. See the DIALOG command to determine the proper logical
unit dimensions for your system. The (x, y) coordinates are relative to the dialog box which
contains the check box. The top left corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Default

The optional Default argument is an integer specifying the initial state of the check box:

Integer Initial State

0 (zero) Indicates the initial state is unchecked

1 (one) Indicates it is checked

If the default argument is not included, the default state is unchecked.

CheckBoxText

The CheckBoxText argument is a string describing the check box option. It is displayed to the
right of the check box.

Command

The optional Command argument specifies a logical command (either a single command or
a command block). Changing the state of the check box executes the logical command. If a
command is not included, changing the state of the check box has no effect.

Comments

A check box is an active control. You can obtain the state of a check box using the (DIALOG)
CHECKBOX function. You may include a maximum of 16 check boxes in a single dialog box.

3 C
om

m
ands

295

Example

Dialog
CHECKBOX 1 “My Life as a Dog”
CHECKBOX 0 “A Boy’s Life”
CHECKBOX 0 “A Boy and His Dog”
CHECKBOX 0 “All Dogs Go to Heaven”
BUTTON DEFAULT “OK” RESUME
BUTTON “Cancel” RESUME
DIALOG END
WAIT RESUME
IF Checkbox (3) = 1 and CheckBox (2) = 0
PERFORM CheckBox3
ELSE
CANCEL
DIALOG CANCEL
Return

(DIALOG) CHECKBOX, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

296

DIALOG CONTROL

DIALOG CONTROL DialogIndex Control ControlNum Update

This command allows the you to alter the appearance and behavior of dialog boxes after they have
been created. The DIALOG CONTROL command also updates the attributes of a previously defined
dialog control.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) identifying a particular dia-
log box. If it is not included, DCS uses zero as the default value.

Control

The Control argument indicates which control to update and is specified by one of the follow-
ing keywords:

BUTTON GROUPBOX LISTBOX RADIOGROUP

CHECKBOX ICON MESSAGE WIDEBUTTON

EDITTEXT ICONBUTTON RADIOBUTTON

ControlNum

The ControlNum argument is an integer specifying the desired control; the first control of each
type is specified by the integer one. To specify the first button or list box in a dialog box, assign
the integer 1 (one) to the ControlNum argument following the keyword BUTTON or LIST-
BOX.

Update

The effect of the Update argument varies, depending upon which keyword is specified. The
specific syntax for each keyword is given below. The Control and ControlNum arguments
which normally precede these keywords have been omitted for clarity.

3 C
om

m
ands

297

Keyword Description

BACKGROUND (rval, gval, bval) The BACKGROUND keyword directs DCS to set the back-
ground color for icons in dialog boxes, the text of list boxes
and messages, and the titles of group boxes. The rval,
gval and bval values represent the level of red, green, and
blue. The number for a color level can range from 0 to 255,
where 255 represents the greatest saturation of the color.

DISABLE The DISABLE keyword directs DCS to make the control
inactive (it appears dimmed).

ENABLE The ENABLE keyword directs DCS to make the control
active (it appears highlighted).

HIDE The HIDE keyword directs DCS to remove the specified
control from view. A control should be hidden before invok-
ing the MOVE keyword.

MOVE (x, y) The MOVE keyword directs DCS to move the control to a
new location in the dialog box. A control should be hidden
before invoking the MOVE keyword. The coordinate set (x,
y) specifies where in the dialog box to place the control.
See the DIALOG command to determine the proper logical
unit dimensions for your system. The coordinates (x, y) are
related to the dialog box which contains the control. The top
left corner of the dialog box is considered (0,0).

SETFOCUS The SETFOCUS keyword directs DCS to select a control in
a dialog box as a default control.

SHOW The SHOW keyword directs DCS to make a hidden control
visible.

TEXT (rval, gval, bval) The TEXT keyword directs DCS to set the color of the text
in list boxes, messages, and titles of group boxes. The rval,
gval and bval values represent the level of red, green and
blue, respectively. The color level is a number from 0 to
255, where 255 represents the greatest saturation of the
color.

DIALOG CONTROL, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

298

Example

In this example:

Dialog “Color Text”
EditText (,,80) “Name: “
Message (,,80) “ “
Button Default “&OK” Resume
Dialog End

Dialog Control EditText 1 Text (0, 255, 0) ;Green Text

Wait Resume

Dialog Control Edittext 1 Background (0,0,255)
;Blue Background
Dialog Update Message 1 “Thanks!!”
Dialog Control Message 1 Text (255,0,0) ;Red Text
Wait Delay “6”
Dialog Cancel

the script draws a dialog box with an edit text field, a message (initially blank), and a button.
The script makes the text of the edit text field green. When you click OK, the background of
the edit text field changes to blue, and the message updates to display “Thanks!!” in red.
After a delay of six seconds, the script removes the dialog box from the screen.

In this example:

Dialog Control Button 1 SetFocus

the command highlights the first button in the dialog.

DIALOG CONTROL, continued

3 C
om

m
ands

299

DIALOG CONTROL, continued

In this script segment:

#Boolean = True
DIALOG “Select”
EDITTEXT (,,140) “New File Name”
BUTTON (,,80) “Delete File”
BEGIN
#Boolean = False
PERFORM “DeleteFile”
RESUME
END
BUTTON DEFAULT “&Ok”
BEGIN
#Boolean = False
RESUME
END
Dialog End

WHILE #Boolean
BEGIN
DIALOG CONTROL BUTTON 1 SETFOCUS
WAIT DELAY “1”
DIALOG CONTROL EDITTEXT 1 SETFOCUS
WAIT DELAY “1”
DIALOG CONTROL BUTTON 2 SETFOCUS
WAIT DELAY “1”
End

DCS shifts the focus from one control to another until one of the buttons in the dialog box is
selected.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

300

(DIALOG) DIMENSION

DIMENSION Control Attribute Value

The (DIALOG) DIMENSION command specifies the desired position and size of a control. It is used
when the optional coordinate set is not included. You may use this command if you have not specified
the coordinate set of a control.

Note: Dialog boxes in the script language are governed in most cases by the operating
system (Windows 95/98/NT). Therefore, settings which affect the display of dialog
boxes in Windows also affect dialogs created with the DCS Script Language. For
example, if display settings are set to Large Fonts, scripted dialog boxes use large fonts
and are larger than dialog boxes displayed when using Small Fonts.

Arguments

Control

The Control argument is specified by one of the following keywords:

BUTTON GROUPBOX LISTBOX RADIOGROUP

CHECKBOX ICON MESSAGE

EDITTEXT ICONBUTTON RADIOBUTTON

Attribute

The Attribute argument is specified by one of the following keywords:

Keyword Description

WIDTH, HEIGHT These keywords define the desired width and height of
the specified Control.

HTAB, VTAB These keywords define the desired horizontal and verti-
cal distance between specified Controls of the same
type.

RIGHTMARGIN, LEFTMARGIN These keywords locate a Control from the right or left
margin of the dialog box.

Value

The Value argument is a numeric specifying the desired dimension, in logical units, of the
specified Item. See the DIALOG command to determine the proper logical unit dimensions for
your system.

Comments

The (DIALOG) DIMENSION command affects only controls in the dialog box you are defin-
ing. The dimensions are reset to the system defaults when a new DIALOG command is started.

3 C
om

m
ands

301

(DIALOG) EDITTEXT

EDITTEXT (x, y, w, h) Box Prompt Text LIMIT NumChars PASSWORD

The (DIALOG) EDITTEXT dialog control command displays an edit text control (both prompt charac-
ters and a text box) in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the edit text control (prompt and text box). The height (h) coordinate modifies
only the height of the text box, not the prompt.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the edit text control. The
top left corner of the dialog box is considered (0,0).

If you include the coordinate set, you can specify one to four coordinates. For example, (,,40,)
specifies the width only. If you do not include a coordinate set, DCS assigns a default size and
placement.

Box

The optional Box argument is an integer specifying the width of the text box. If you do not
include the Box argument, DCS assigns a default width.

Prompt

The Prompt argument is a string specifying the character or text which will appear to the left
of the text box. If you do not want a prompt, specify a null string (“”).

Text

The optional Text argument is a string specifying the text DCS initially displays in the text
box. If the Text argument is not included, an empty text box is created.

LIMIT NumChars

The optional LIMIT clause limits the number of characters DCS will initially display when it
creates the text box, as well as limiting the number of characters you may enter in the text box.
The NumChars argument is an integer specifying the number of characters. If you do not
include the LIMIT clause, you may enter a maximum of 254 characters in the text box.

PASSWORD

The optional PASSWORD keyword directs DCS to display an asterisk for each character you
enter into the edit text box, instead of displaying the entered text. This keyword allows you to
protect sensitive information (like passwords or authorization codes).

If you want DCS to display asterisks when it initially creates the text box, as well as display
asterisks after characters are entered in the text box, you must include both the PASSWORD
keyword and the Text argument. DCS will initially include as many asterisks as the number of
characters you place in the Text argument.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

302

(DIALOG) EDITTEXT, continued

Comments

The Prompt argument of an edit text control is a static control. The text box of an edit text
control is an active control.

The (DIALOG) EDITTEXT function allows you to gather the characters you enter into the text
box.

You may include a maximum of 64 edit text controls in a single dialog box.

Example

These commands:

DIALOG
EDITTEXT 100 “Prompt:” “Default Text”
BUTTON (165, 5, ,) DEFAULT “OK” RESUME
DIALOG END
WAIT RESUME
$Text = EDITTEXT (1)
DISPLAY $Text
DIALOG CANCEL

display a dialog box.

DCS’s script language allows you to enter a maximum of 254 characters in the text box. The
text box in this example is 100 dialog units wide. When you select the OK button or the Re-
sume option on the Script menu, the (DIALOG) EDITTEXT function will copy the text from
the edit text box into $Text. The DISPLAY command then shows the contents of $Text in
the session window.

3 C
om

m
ands

303

(DIALOG) GROUPBOX

GROUPBOX (x, y, w, h) Message

The (DIALOG) GROUPBOX command displays a group box control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the group box. See the DIALOG command to determine the proper logical unit
dimensions for your system. The (x, y) coordinates are relative to the dialog box which con-
tains the group box. The top left corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Message

The Message argument is a string specifying the message to display in the top left corner of
the group box.

Comments

A group box is a static control.

You may include a maximum of 255 messages in a single dialog box.

Although the coordinate set is optional, you should explicitly define the coordinates. Since a
group box is independent of the controls it encloses, DCS cannot accurately pick a default size
and placement for a group box.

To specify a group box with no embedded text, use a null string (“”) for the Message argu-
ment.

Example

Dialog
GROUPBOX (20, 12, 120, 80) “Which Do You Like?”
CHECKBOX (30,30) 1 “My Life as a Dog”
CHECKBOX (30,45) 0 “A Boy’s Life”
CHECKBOX (30,60) 0 “A Boy and His Dog”
CHECKBOX (30,75) 0 “All Dogs Go to Heaven”
BUTTON (20, 100,,) DEFAULT “OK” RESUME
BUTTON (80, 100,,) “Cancel” RESUME
DIALOG END

WAIT RESUME
IF Checkbox (3) = 1 and CheckBox (2) = 0

PERFORM CheckBox3
ELSE

CANCEL

DIALOG CANCEL

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

304

(DIALOG) ICON

ICON (x, y, w, h) IconId

The (DIALOG) ICON command displays the specified icon control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the icon. Specifying a width and height for an icon will not actually change the
size of the icon, but will restrict or enlarge the space allocated to the display of the icon.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the icon. The top left
corner of the dialog box is at (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

IconId

The IconId argument is specified by one of the following keywords:

CAUTION NOTE STOP

DYNACOMM QUESTION “icon library resource ID”

Note: You must enclose an icon ID within quotation marks.

Comments

An icon is a static control.

You may include a maximum of 255 icons in a single dialog box.

Example

DIALOG
ICON CAUTION
Icon DCS
Icon Note
Icon Stop
Button Default “OK” Resume
Button “Cancel” Resume
Dialog End
Wait Resume
Dialog Cancel

In this example, the script displays icons based on keywords supplied to the ICON command.
These icons do not have any other function in the dialog other than to make the dialog more
attractive.

3 C
om

m
ands

305

(DIALOG) ICONBUTTON

ICONBUTTON (x, y, w, h) IconId Default Title Command

The (DIALOG) ICONBUTTON command displays an icon button control. An icon button control is a
button in the shape of an icon.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the icon button. Specifying a width and height for an icon button will not actu-
ally change the size of the icon button, but will restrict or enlarge the space allocated to the
display of the icon button.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the icon button. The top
left corner of the dialog box is at (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

IconId

The IconId argument is specified by one of the following keywords:

CAUTION NOTE STOP

DYNACOMM QUESTION “icon library resource ID”

Note: You must enclose an icon ID within quotation marks.

Default

The optional Default argument is specified by one of the following keywords:

Keyword Action

DEFAULT Causes the icon button to be automatically clicked when the [RETURN] key
is pressed, unless another button is highlighted.

CANCEL Causes the icon button to be automatically clicked when the [ESC] key is
pressed, regardless of which button is highlighted.

A default button is displayed in the dialog box with a black border. You may specify only one
DEFAULT button per dialog box.

Title

The optional Title argument is a string specifying the characters to display beneath the icon
button. If a Title is not included, no title is displayed beneath the icon button.

Command

The optional Command argument specifies a logical command (either a single command or

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

306

(DIALOG) ICONBUTTON, continued

a command block). Clicking the icon button executes the logical command. If a command is
not included, clicking the icon button has no effect.

Comments

An icon button is an active control.

You may include a maximum of 128 buttons in a single dialog box.

Icon buttons cannot be activated by accelerator keys or keyboard shortcuts.

Example

DIALOG
ICONBUTTON CAUTION “Caution” RESUME
Iconbutton DCS “DCS” Resume
Iconbutton Note “Note” Resume
Iconbutton Stop “Stop” Resume
Button Default “OK” Resume
Button “Cancel” Resume
Dialog End

Wait Resume

Dialog Cancel

This example shows icon buttons which, in addition to providing an attractive quality as
shown in the ICON command example, also function like any dialog button. The icons dis-
played in this script are referred to by their keywords.

DIALOG
Iconbutton “_BinXfers” “Transfers” Resume
Iconbutton DCS “DCS” Resume
Iconbutton Note “Note” Resume
Iconbutton Stop “Stop” Resume
Button Default “OK” Resume
Button “Cancel” Resume
Dialog End

Wait Resume

Dialog Cancel

This example is similar to the previous example. However, the icon for the first icon button is
retrieved from DCS’s icon library, FSEICONS.DLL.

3 C
om

m
ands

307

(DIALOG) LISTBOX

LISTBOX (x, y, w, h) Table Record INVERT COMBOBOX Command

The (DIALOG) LISTBOX command displays a list box control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the list box. See the DIALOG command to determine the proper logical unit di-
mensions for your system. The (x, y) coordinates are relative to the dialog box which contains
the list box. The top left corner of the dialog box is at (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Table

The Table argument is an integer (from 0 to 15) identifying the table containing the desired
data.

Record

The optional Record argument is an integer (from 0 to n) specifying which record number
DCS initially selects. If no Record argument is included, no record is initially selected. You
may specify a record number of -1, or use the DIALOG UPDATE command to ensure that
no record is selected. It is best to put parentheses around the number to prevent the compiler
from misinterpreting the expression (for example, table = table (-1)).

INVERT

The optional INVERT keyword lists the records in reverse order.

Command

The optional Command argument specifies a logical command (either a single command or a
command block). Selecting an item in the list box executes the logical command. If a com-
mand is not included, selecting a list box item has no effect.

COMBOBOX

The optional COMBOBOX parameter reconstructs the list box into a drop-down list of items.
DCS displays the selected item in the combo box. The other items appear when the down
arrow is selected. The coordinates used for this type of list box must specify the size of the fully
open box.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

308

(DIALOG) LISTBOX, continued

Comments

If a list box in a dialog box contains only columns of data, associate the structured table with
the list box and use the SYSTEM command with the 0x0803 parameter to force the text in the
list box to be displayed in a fixed-width font.

A list box is an active control.

If the list box item is selected by double-clicking the mouse, the default button (if included) is
also clicked.

You can obtain the number of the selected record using the (DIALOG) LISTBOX function.

You may include a maximum of ten list boxes in a single dialog box.

Example

Table Define 0 Fields Char 12 File
TABLE LOAD 0 FROM “C:\DCSERIES\Memo\Table.TXT” AS TEXT
Dialog
Listbox 0 5 Invert
Button Default “OK” Resume
Button “Cancel” Resume
Dialog End

Wait Resume

Record Read 0 At Listbox ()
Display @R0 | “^M”
Dialog Cancel
Table Close 0

The data stored in the file named TABLE.TXT is loaded into Table 0 (zero) and then dis-
played (in reverse order) in the list box.

3 C
om

m
ands

309

(DIALOG) MESSAGE

MESSAGE (x, y, w, h) Text

The (DIALOG) MESSAGE command displays a message control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the message. Specifying a width and height for a message will not actually change
the size of the message, but will restrict or enlarge the space allocated to the display of the mes-
sage.

See the DIALOG command to determine the proper logical unit dimensions for your system.
the (x, y) coordinates are relative to the dialog box which contains the message. The top left
corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Text

The Text argument is a string or string variable specifying the message to display.

Comments

A message is a static control.

You may include a maximum of 255 messages in a single dialog box.

Example

Table Define 0 Fields Char 12 File
TABLE LOAD 0 FROM “C:\DCSERIES\Memo\Table.TXT” AS TEXT
Dialog
Message “Select a record from the file:”
Listbox 0 5 Invert
Button Default “OK” Resume
Button “Cancel” Resume
Dialog End
Wait Resume
Record Read 0 At Listbox ()
Dialog Cancel
;Manipulate the record
;
;
Table Close 0

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

310

(DIALOG) NEWLINE

NEWLINE

The (DIALOG) NEWLINE command places the next specified dialog box control on the next line of
the dialog box.

Arguments

The (DIALOG) NEWLINE command takes no arguments.

Comments

This command may be used to place dialog box controls on successive lines, without using the
optional coordinate set. (DIALOG) NEWLINE controls vertical placement only.

Example

In this example:

DIALOG
MESSAGE “The time is: “ | TIME ()
NEWLINE
MESSAGE “The date is: “ | DATE ()
NEWLINE
NEWLINE
BUTTON “OK” RESUME
DIALOG END
WAIT RESUME
DIALOG CANCEL

the (DIALOG) NEWLINE command places the date message one line down from the time
message, and places the OK button two lines down from the date message.

3 C
om

m
ands

311

(DIALOG) PICTURE

PICTURE (x, y, w, h) PictureId

The (DIALOG) PICTURE dialog control command displays a picture in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and height
(h) of the picture. Specifying a width and height for a picture will not actually change the size
of the picture, but will restrict or enlarge the space allocated to the display of the picture.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the picture. The top left
corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

PictureId

The PictureId argument is a string specifying the path and file name of a .bmp file (a device
independent bitmap format). You must include the proper extension of the file format.

Comments

A picture is a static control. A dialog box can display only one picture.

Example

Dialog (, , 77, 145)
PICTURE (5, 5, ,) “C:\Graphics\Shuttle.BMP”
Button (2, 125, ,) Default “OK” Resume
Button (43, 125, ,) “Cancel” Resume
Dialog End

Wait Resume
Dialog Cancel
Return

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

312

(DIALOG) RADIOBUTTON

RADIOBUTTON (x, y, w, h) ButtonName

The (DIALOG) RADIOBUTTON command displays a radio button control in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the radio button. Specifying a width and height for a radio button will not
actually change the size of the radio button, but will restrict or enlarge the space allocated to
display the radio button.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the radio button. The top
left corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

ButtonName

The ButtonName argument is a string describing the radio button option. It is displayed to the
right of the radio button.

If any character in the ButtonName argument is preceded by an ampersand (&), the character
will appear underlined in the radio button name. The radio button can then be selected by
pressing the [ALT] key and the key of the underlined character simultaneously.

Comments

A radio button is an active control.

A (DIALOG) RADIOBUTTON command must follow a (DIALOG) RADIOBUTTON com-
mand. You may include a maximum of 255 radio buttons in a single dialog box.

Example

See the (DIALOG) RADIOGROUP command.

3 C
om

m
ands

313

(DIALOG) RADIOGROUP

RADIOGROUP (x, y, w, h) Default GroupName Command

The (DIALOG) RADIOGROUP command defines a group of radio buttons in a dialog box.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the top left corner (x, y), width (w), and
height (h) of the radio group title. Specifying a width and height for a radio button will not
actually change the size of the radio button title, but will restrict or enlarge the space allocated
to display the radio button title.

See the DIALOG command to determine the proper logical unit dimensions for your system.
The (x, y) coordinates are relative to the dialog box which contains the radio buttons. The top
left corner of the dialog box is (0,0).

If the coordinate set is included, one to four coordinates can be specified (for example, (,,40,)
specifies width only). If you do not include a coordinate set, DCS assigns a default size and
placement.

Default

The optional Default argument is an integer specifying which radio button DCS initially
selects. If the Default argument is not included, no radio button is initially selected.

GroupName

The GroupName argument is a string specifying the title of the radio group, which is displayed
above the radio group.

If any character in the GroupName argument is preceded by an ampersand (&), the character
appears underlined in the radio group title. Pressing the [ALT] key and the key of the under-
lined character simultaneously highlights the nearest active control.

Command

The optional Command argument specifies a logical command (either a single command or a
command block). Selecting a radio button executes the logical command. If a command is not
included, selecting a radio button has no effect.

Comments

A radio group is a static control.

Radio buttons are numbered sequentially (from 1 to n) within a radio group. The radio but-
tons are numbered according to the order in which they appear in the script, not according to
their placement on the screen.

You can obtain the number of the radio button selected using the (DIALOG) RADIOGROUP
function.

You may include a maximum of 16 radio groups in a single dialog box.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

314

(DIALOG) RADIOGROUP, continued

Example

Dialog
RadioGroup (30,15) “Select One”
RadioButton (30,30) “My Life as a Dog”
RadioButton (30,45) “A Boy’s Life”
RadioButton (30,60) “A Boy and His Dog”
RadioButton (30,75) “All Dogs Go to Heaven”
Button (20, 100,,) Default “OK” Resume
Button (80, 100,,) “Cancel” Resume
Dialog End

Wait Resume
If RadioGroup (1) = 1
Perform RadioGroup1
Else
Cancel

Dialog Cancel

DIALOG (, , 250,)
RADIOGROUP (30,15) “Select One Here”
RADIOBUTTON (30,30) “My Life as a Dog”
RADIOBUTTON (30,45) “A Boy’s Life”
RADIOBUTTON (30,60) “A Boy and His Dog”
RADIOBUTTON (30,75) “All Dogs Go to Heaven”

RADIOGROUP (140,15) “Select One Here Also”
RADIOBUTTON (140,30) “Goin’ South”
RADIOBUTTON (140,45) “Gone with the Wind”
RADIOBUTTON (140,60) “The Wind and the Lion”
RADIOBUTTON (140,75) “A Lion in Winter”

BUTTON (20, 100,,) Default “OK” RESUME
BUTTON (80, 100,,) “Cancel” RESUME
DIALOG END

WAIT RESUME

IF (RadioGroup (1) = 3) and (RadioGroup (2) = 1)
PERFORM SubCrazy
ELSE
CANCEL

DIALOG CANCEL

RETURN

3 C
om

m
ands

315

DIALOG UPDATE

DIALOG UPDATE DialogIndex Control ControlNum Update

The DIALOG UPDATE command updates a previously defined dialog control.

Arguments

DialogIndex

The optional DialogIndex argument is an integer (from 0 to 15) identifying a particular dia-
log box. If it is not included, DCS uses zero as the default value.

Control

The Control argument indicates which control to update and is specified by one of the follow-
ing keywords:

BUTTON GROUPBOX LISTBOX RADIOBUTTON

CHECKBOX ICON MESSAGE RADIOGROUP

EDITTEXT ICONBUTTON PICTURE WIDEBUTTON

ControlNum

The ControlNum argument is an integer specifying the control; the first control of each type is
specified by the integer 1 (one).

The ControlNum argument must follow each Control argument keyword, except the PIC-
TURE keyword.

Update

The effect of the Update argument varies, depending upon which control attribute keywords
is specified. The syntax for each keyword is given in the following text. The ControlNum argu-
ment has been omitted for clarity.

Keyword Action

BUTTON Title Directs DCS to update the title of the specified button.
The Title argument is a string specifying the updated
button title.

CHECKBOX Default Text Directs DCS to update the state of the check box and
update the text displayed to the right of the specified
check box. You must specify either the Default or the
Text argument, or both. The Default argument is an
integer (either zero or one) specifying a new default
status of the check box; zero specifies unchecked, and
one specifies checked. The Text argument is a string
specifying the new text to be displayed to the right of
the check box.

EDITTEXT TEXT Updates the contents of the specified edit text box using
the Text argument.

GROUPBOX Message Updates the embedded text of the specified group
box. The Message argument is a string specifying the
replacement for the current message string.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

316

DIALOG UPDATE, continued

ICON IconId Updates the specified icon. The IconId argument con-
sists of one of the available icon keywords, or a string
specifying the ID of the new icon to be displayed.

ICONBUTTON IconId Title Updates the title and the icon of the specified icon but-
ton. The ICONBUTTON keyword requires one or both of
the following arguments:

 IconId An icon keyword or a string that specifies the
ID of the new icon; and

 Title A string that specifies the new text to appear
beneath the icon button.

LISTBOX Updates the data in the specified list box. You may
specify either a new table to be loaded, or a modifica-
tion in a single record.

New Table:

TABLE number Record INVERT

If a new table is to be loaded, the LISTBOX keyword
may have three arguments:

 The first keyword, TABLE, is followed by the num-
ber of the table containing the new data.

 The optional second keyword, Record, is an inte-
ger specifying the record number to be selected
by default.

 The optional third keyword, INVERT, which di-
rects DCS to display the records in reverse order.

Modify Record:

Record Text

If a single record is to be modified, the LISTBOX
keyword may have one or two arguments:

 The optional first keyword, Record, is an optional
integer specifying which record to modify. If Re-
cord is not included, the currently selected record
is modified.

 The second keyword, Text, is a string specifying
the replacement data for the specified record.

MESSAGE Text Updates the specified message. The Text argument is a
string replacing the current message string.

PICTURE FileName Changes the BMP or WMF image currently displayed in
the a dialog box. Do not include the ControlNum argu-
ment with the PICTURE keyword. FileName specifies
the path and name of the picture.

RADIOBUTTON ButtonName Updates the text displayed to the right of the specified
radio button. The ButtonName argument is a string
specifying the new text to appear to the right of the
radio button.

Keyword Action

3 C
om

m
ands

317

DIALOG UPDATE, continued

RADIOGROUP Default GroupName Updates the default radio button and the title of the
specified radio group. The RADIOGROUP keyword
requires one or both of the following arguments:

 Default, an integer specifying which radio button
within the radio group is to be selected initially; and

 GroupName, a string specifying the new title to ap-
pear above the radio group.

WIDEBUTTON Title Updates the title of the specified wide button. The Title
argument is a string specifying the new title.

Example

In this example:

DIALOG (,,260,100) “GIFT LIST”
MESSAGE (,,400) “Merry Christmas!”
EDITTEXT 100 “Enter Name:”
NEWLINE
EDITTEXT 120 “Enter Desired Gift:”
BUTTON “Enter” PERFORM update
BUTTON “Exit” RESUME
DIALOG END
WAIT RESUME
DIALOG CANCEL
CANCEL

*update
DIALOG UPDATE MESSAGE 1 “Thanks “ | edittext(1)
RETURN

when the Enter button is clicked, the message “Merry Christmas!” is updated to dis-
play “Thanks” followed by the contents of edittext1.

Keyword Action

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

318

DISCONNECT

DISCONNECT WINDOW WinHandle

The DISCONNECT command terminates the connection with the host.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argu-
ment. The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause terminates the session in the window specified by the WinHandle argu-
ment. If the WINDOW clause is not included, all connected sessions will be terminated.

Example

In this example:

LOAD “HOST7”
CONNECT
IF ERROR () or NOT CONNECT ()
CANCEL
FILE SEND BINARY “DATA.TXT” “” “secret” AS “data1”
IF ERROR ()
DISPLAY “File not sent”
DISCONNECT

DCS loads a session file and connects to the host. After the file transfer is complete, DCS
disconnects from the host, terminating the session.

3 C
om

m
ands

319

DISPLAY

DISPLAY (Row, Col) String CRONLY WINDOW WinHandle

The DISPLAY command writes a sequence of characters into a connected session window, but it does
not send the text to the remote system.

Arguments

(Row, Col)

The optional (Row, Col) coordinate set indicates the row and column in the session window
in which to display the string, where the first row is row zero, and the first column is column
zero.

If you do not include coordinates, DCS displays the string starting at the current cursor posi-
tion.

If you provide a coordinate which is larger than the number of rows or columns in the session
window (e.g., 75, 75), the string is displayed either in the status bar (the area between the
session window and the toolbar or bottom of the DCS application window) or at position 0,0.
The display location is dependent on the particular emulation.

String

The String argument contains the characters to display.

CRONLY

The optional CRONLY keyword causes the DISPLAY command to display carriage returns as
carriage returns only (not followed by line feeds). If it is not included, the DISPLAY command
displays a line feed character after every carriage return character displayed in the string.

Note: The CRONLY keyword is not applicable to 3270 emulations.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

If a session is connected in a session window, the WINDOW clause causes DCS to display the
String argument in the session window specified by the WinHandle argument. If the WIN-
DOW clause is not included, DCS displays the contents of the String argument in the cur-
rently highlighted and connected session window.

Comments

The DISPLAY command only displays text in a session which is connected to a host.

The DISPLAY command can help todebug a script. If errors occur, strategically placed DIS-
PLAY commands might pinpoint which command is generating the error (see the second
example).

The DISPLAY command displays a maximum of 254 characters at a time. For example, con-
sider that if $String1 and $String2 have 254 characters each, the following script lines

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

320

DISPLAY, continued

will only display $String1:

DISPLAY $String1 | “^M”
;DCS will not display the Control-M, a
;carriage return, after displaying $String1 (the
;terminal cursor will remain at the end of $String1
;in the session window), since $String1 has 254
;characters
DISPLAY $String1 | $String2
;DCS will not display $String2 (the terminal
;cursor will be in the same place as in the script
;line above), since $String1 has 254 characters

Example
In this example:

TABLE DEFINE 0 FIELDS CHAR 10 INT 5 INT 5
TABLE LOAD 0 FROM “BUDGET.XLS” AS SYLK
SET %1 0
WHILE NOT EOF ()
BEGIN
RECORD READ 0
DISPLAY (%1,0) @R0
INCREMENT %1
END

and assuming a connected session, DCS defines and loads an Excel spreadsheet into Table 0
(zero). DCS reads each record and allows you to examine them in the session window using
the DISPLAY command.

In this example:

TABLE DEFINE 0 FIELDS CHAR 20 CHAR 40
IF ERROR ()
BEGIN
DISPLAY “Table 0 not defined”
BEEP1
END
TABLE DEFINE 1 TEXT “MYFILE”

IF ERROR ()
BEGIN
DISPLAY “Table 1 not defined”
BEEP1
END
TABLE LOAD 0 FROM “DATA” AS SYLK
IF ERROR ()
BEGIN
DISPLAY “Table 0 not loaded”
BEEP1
END

and assuming a connected session, the DISPLAY command is used as a debugging tool to
help determine which command is not executing as expected. If an error occurs, the messages
displayed in the session window might point to the problem.

3 C
om

m
ands

321

DISPLAYCONFIG

DISPLAYCONFIG String WINDOW WinHandle

The DISPLAYCONFIG command sets display parameters for a session window. These settings are
available on the Displays tab of the Session Properties dialog.

Arguments

String

The String argument is composed of a keyword followed by the assignment operator (=) and a
valid setting.

The keywords and the their values are in the table below:

General Tab Keywords Type Value(s)

TopStatusLine Boolean 1 (true), 0 (false)
BottomStatusLine Boolean 1 (true), 0 (false)
HorizontalScrollbarMode String 0 (auto), 1 (off), 2 (on)
VerticalScrollbarMode String 0 (auto), 1 (off), 2 (on)
ShowSessionButtons Boolean 1 (true), 0 (false)
TerminalBorder Boolean 1 (true), 0 (false)
MaximumScrollRate Integer 1, 2, 3, 4, 5

Font Tab Keywords Type Value(s)

AutoSizeFont Boolean 1 (true), 0 (false)
FontSize String w, h, where w is an integer indicating the width in

pixels of the font, and where h is an integer indicat-
ing the height in pixels of the font.

MinFontSize String w,h, where w is an integer indicating the width in
pixels of the font, and where h is an integer indicat-
ing the height in pixels of the font.

UseEmulationFont Boolean 1 (true), 0 (false)
FontFaceName String The name of a monospace or fixed pitch font on

your system.
Blinking Boolean 1 (true), 0 (false)

Cursor Tab Keywords Type Value(s)

CursorVisible String On, Off
CursorType String Block
CursorBlink String Blink, Steady
AutoScrollToCursor Boolean 1 (true), 0 (false)
HistorySize Integer 0 to 9999
ReverseHistory Boolean 1 (true), 0 (false)

SaveClearedScreen Boolean 1 (true), 0 (false)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

322

DISPLAYCONFIG, continued

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The optional WinHandle argument is an integer identifying a particular child window.

Comments

The ERROR function returns TRUE if the WinHandle or String keyword is invalid.

Also see: GETDISPLAYCONFIG command

Example

These script lines:

DisplayConfig “TerminalBorder=True”
DisplayConfig “MaximumScrollRate=16”
DisplayConfig “AutoSizeFont=True”

affect the active session window. They turn on the terminal border, sets the scroll rate to the
highest setting, and require DCS to automatically resize fonts as the session window is resized.

These script lines:

DisplayConfig “CursorType=On”
DisplayConfig “CursorType=Block”

affect the currently highlighted session window. They turn on the session cursor as a block
character in the session window.

3 C
om

m
ands

323

DROPDTR

DROPDTR DelayUnits

The DROPDTR command directs DCS to hold low the DTR line of a session’s serial port for a speci-
fied number of milliseconds.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DelayUnits

The DelayUnits argument is an integer specifying the length of time the DTR line is to be held
low, where one delay unit equals one millisecond.

Comments

This command is valid only for the serial ports and modems.

Example

In this example:

*hangup
SEND “logout”
DROPDTR 300

DCS sends the logout command to the remote system, then drops the DTR line low for 300
milliseconds in order to break the connection.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

324

EDIT COPY

EDIT COPY String WINDOW WinHandle

The EDIT COPY command copies characters to the clipboard. Executing the EDIT COPY command
is equivalent to selecting Copy on the Edit menu.

Arguments

String

The optional String argument specifies text to copy to the clipboard. If you have not included
the String argument, DCS will copy the visible selection made in the currently active child
window. If you have not included the String argument and no characters are selected in a
DCS child window, DCS will not affect the clipboard contents.

WINDOW WinHandle

The optional WINDOW clause is composed of both the WINDOW keyword and the WinHan-
dle argument. The WinHandle argument is an integer identifying a particular child window.
The WINDOW clause specifies the current selection in the window identified by the WinHan-
dle argument.

Comments

If the WINDOW clause and the String argument are not included in the command, the cur-
rent selection in the active edit window is copied. However, if you include both the WINDOW
clause and the String argument in the command, the command will default to copying the
String argument only.

The EDIT COPY command does not work in concert with the SELECTION or SELECTION
BUFFER commands (invisible selections), but works with visible selections you make with
your mouse or cursor keys.

Example

In this example:

EDIT COPY SCREEN (0, 0, ,%WnHnd)

the SCREEN function provides the first line of a window (whose window handle is contained
in the variable %WnHnd) to the EDIT COPY command. The EDIT COPY command then
places a copy of the text into the clipboard.

This example:

EDIT COPY Window %Session1Hnd

copies any text selected in the session window specified by the window handle contained in
%Session1Hnd.

3 C
om

m
ands

325

EDIT COPYSPECIAL

EDIT COPYSPECIAL Destination Format WINDOW WinHandle

The EDIT COPYSPECIAL command copies text to a destination.

Note: The EDIT COPYSPECIAL command does not apply to the IBM TN3270 emulation.

Arguments

Destination

The Destination argument is specified by one of the following keywords:

Keyword Action

PRINTER If you want to send text from a session window to the printer, you must use
the PRINTER keyword as the Destination argument and the TEXT keyword
as the Format argument (see the Format argument below). The PRINTER
keyword assumes that the script has made a selection in a session window
with the SELECTION command and also assumes that the session window
is the active window.

 If you want to send a graphical capture of a session to the printer, you must
include the BITMAP keyword as the Format argument (see the Format argu-
ment below).

 The PRINTER keyword assumes that a session window is active. The
command captures the entire DCS application window and sends it to the
printer (regardless of whether the script has made a selection in the session
window).

FILE FileName If you want to save text from a session window to a file, you must use the
FILE phrase as the Destination argument and the TEXT keyword as the
Format argument (see the Format argument below). The FILE phrase is
composed of the keyword FILE and an optional string argument, FileName.
The FILE phrase assumes that the script has made a selection in the ses-
sion window with the SELECTION command and also assumes that the
session window is the active window.

CLIPBOARD The CLIPBOARD keyword is valid with all of the formats allowed for this
command (see the Format argument below). When you include the TEXT or
TABLE keywords, the CLIPBOARD keyword makes the same assumptions
as the PRINTER keyword, but copies the text to the clipboard.

 If you want to copy a graphical capture of a session to the clipboard, you
must include the BITMAP keyword as the Format argument (see the Format
argument below). Once copied to the clipboard, the image may be pasted it
into an open file in an application which supports the bitmap format (such as
Windows Paint).

 If a session window is active, this command captures the entire DCS ap-
plication window and places it in the clipboard (regardless of whether the
script has made a selection in the session window).

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

326

EDIT COPYSPECIAL, continued

Format

The Format argument may be one of the following keywords:

Keyword Availability

TEXT Available for all three destination keywords (see the Destination argument
above).

BITMAP Available only with the CLIPBOARD and PRINTER keywords.

TABLE Available only with the CLIPBOARD keyword.

WINDOW WinHandle

The WINDOW clause and WinHandle argument must be included. The window handle is an
integer specifying a session window.

Comments

The ERROR function is set to TRUE if DCS cannot complete this command.

When copying text, the EDIT COPYSPECIAL command works in concert with the SELEC-
TION or SELECTION BUFFER commands.

3 C
om

m
ands

327

EDIT COPYSPECIAL, continued

Example

This script:

$Set = “Main”
%ChrNHnd = 6
$WHnd = HWndList ()
#Found = False
%Ptr = 1
WHILE NOT #Found AND (%Ptr < Length ($WHnd))
BEGIN
IF WndTitle(Num ((Substr ($WHnd, %Ptr, %ChrNHnd))))= \
$Set
BEGIN
#Found = True
%TermWinHnd = Num (Substr ($WHnd, %Ptr, %ChrNHnd))
END
Else
BEGIN
%Ptr = %Ptr + %ChrNHnd + 1
END
END

WINDOW ACTIVATE %TermWinHnd
SELECTION 0 5
EDIT COPYSPECIAL FILE “Ed1.TXT” TEXT WINDOW %TermWinHnd
WINDOW OPEN MEMO “Ed1.TXT”
Cancel

assumes the active session is Main and uses the HWNDLIST function to retrieve a list of
window handles of the open DCS child windows. Next in the WHILE loop, the script searches
for the window handle of the session window. When the script finds the handle, it activates
the session window, selects the first six visible lines in the window, copies the lines to a memo
window, and then opens the memo window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

328

EDIT CUT

EDIT CUT WINDOW WinHandle

The EDIT CUT command copies the current selection from the active child window to the clipboard
and then deletes the selection from the window.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The optional WinHandle argument is an integer identifying a particular child window.

The WINDOW clause specifies the current selection in the window identified by the WinHan-
dle argument.

Comments

If the WINDOW clause is not included in the command, the current selection in the active
edit window is copied, and then deleted, from the window. If the WinHandle argument is the
handle of a session window, the selection is only copied to the clipboard; the selection is not
deleted from the session window.

The EDIT CUT command does not work in concert with the SELECTION or SELECTION
BUFFER commands, but does work with selections you make with your cursor keys or mouse.

In script and memo windows, executing the EDIT CUT command is equivalent to selecting
Cut on the Edit menu.

Example

In this example:

EDIT FIND “version 4.70”
EDIT CUT

DCS searches the active document window for the string version 4.70 and cuts the selection
from the document.

3 C
om

m
ands

329

EDIT FIND

EDIT FIND String CASE REVERSE WINDOW WinHandle

The EDIT FIND command searches a child window for a string and, if found, selects it.

Arguments
String

The String argument specifies the string for which to search.

CASE

The optional CASE keyword directs DCS to perform a case-sensitive search. If it is not in-
cluded, the search is performed without regard to the capitalization of the specified string.

REVERSE

The optional REVERSE keyword directs DCS to search the text backward from the current
document position. If it is not included, the search is performed forward from the current
position.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to search a window specified by the WinHandle argument.

Comments

If the WINDOW clause is not included in the command, DCS will search the active edit win-
dow.

If DCS cannot find the contents of String in the window, the ERROR function returns
TRUE.

Example

In this example:

EDIT FIND “DCS version 4.0”
IF ERROR ()
DISPLAY “Old version”
ELSE
DISPLAY “New version”

DCS searches the document window for the specified string. If it is found, “New version”
is displayed in the session window. If it is not found, “Old version” is displayed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

330

EDIT GOTO

EDIT GOTO Line WINDOW WinHandle

The EDIT GOTO command positions the cursor at the beginning of the specified line in a child win-
dow.

Arguments
Line

The Line argument is an integer specifying the line number of the cursor.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to position the cursor in a window specified by the Win-
Handle argument.

Comments

If the WINDOW clause is not included in the command, DCS will position the cursor in the
active edit window. If a Line argument larger than the number of lines in the document is
specified, DCS will position the cursor at the last line of the document.

Example

In this example:

%line = 1
WHILE %line <= 20
BEGIN
EDIT GOTO %line
EDIT COPY STR (%line) | “ “
EDIT PASTE
INCREMENT %line
END

DCS places the cursor at the beginning of each line as it numbers the first 20 lines in the
document window.

3 C
om

m
ands

331

EDIT PASTE

EDIT PASTE WINDOW WinHandle

The EDIT PASTE command copies text from the clipboard to the current selection in a DCS child
window.

Arguments
WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to paste the contents of the clipboard as a text selection in a
window specified by the WinHandle argument.

Comments

If the WINDOW clause is not included in the command, DCS will paste the text into the ac-
tive edit window.

In edit windows, executing the EDIT PASTE command is equivalent to selecting Paste on the
Edit menu.

Example

In this example:

%line = 1
WHILE %line <= 20
BEGIN
EDIT GOTO %line
EDIT COPY STR (%line) | “ “
EDIT PASTE
INCREMENT %line
END

the first 20 lines in the document window are numbered. As the value of %line increases, the
contents of %line are copied to the clipboard and then pasted into the edit window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

332

EDIT REPLACE

EDIT REPLACE String1 String2 CASE REVERSE WINDOW WinHandle

The EDIT REPLACE command searches a script or memo window for String1 and replaces it with
String2.

Arguments

String1

The String1 argument specifies the string for which to search.

String2

The String2 argument specifies the text which is to replace the indicated string.

CASE

The optional CASE keyword performs a case-sensitive search. If it is not included, the search is
performed without regard to the capitalization of the specified string.

REVERSE

The optional REVERSE keyword searches the text backward from the current document posi-
tion. If it is not included, the search is performed forward from the current position.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause replaces String1 in a window, which is specified by the WinHandle argu-
ment.

Comments

If the WINDOW clause is not included in the command, DCS will replace String1 in the active
script or memo window.

In script or memo windows, executing the EDIT REPLACE command is equivalent to select-
ing Replace on the Edit menu.

Each execution of the EDIT REPLACE command searches for and replaces only the first
instance of String1 that it finds.

The ERROR function returns TRUE if String1 is not found.

3 C
om

m
ands

333

Example

These commands:

EDIT GOTO 1
WHILE NOT ERROR ()
EDIT REPLACE “cat” “dog”

establish a loop whereby each instance of the string “cat” is replaced by the word “dog” in
the active edit window.

EDIT REPLACE, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

334

EMULCONFIG

EMULCONFIG String WINDOW WinHandle

The EMULCONFIG command is used to set the value of a parameter used in the emulator configura-
tion for the active session.

Arguments
String

The String argument includes a keyword followed by the assignment operator (=) and a valid
setting. Together, the keyword and the setting are used to configure the emulation for the ac-
tive session.

Note: Configuration keywords for emulations shipped with client options, such as
Tandem 6530 and TN3270, are valid only if the client option has been installed.

The first six tables appearing below and on the next two pages list keywords and valid settings
for the emulations provided in the base product. The remaining tables list keywords and valid
settings for individual client options that are purchased installed separately.

Keywords for ADDS Viewpoint Valid Setting(s)

LOCALECHO 1 (true), 0 (false)

AUTOSCROLL 1 (true), 0 (false)

AUTOLINEFEED 1 (true), 0 (false)

LINETERMINATOR none, cr, creot, cretx

Keywords for ANSI Valid Setting(s)

MODE ansi, tty, scoansi

LINEWRAP 1 (true), 0 (false)

DESTBACKSPACE 1 (true), 0 (false)

LOCALECHO 1 (true), 0 (false)

CODEPAGE850 1 (true), 0 (false)

SCREENROW 24, 25

3 C
om

m
ands

335

Keywords for AT&T 605/705 Valid Setting(s)

MODE att605, att705, pcxt, pcat1, pcat2

BITCONTROL 7, 8

SWAP DELETE 1 (true), 0 (false)

SCREENROW 24, 25

NEWLINE 1 (true), 0 (false)

LOCALECHO 1 (true), 0 (false)

DESTRUCTIVEBS 1 (true), 0 (false)

COLUMNS 80, 132

LINEWRAP 1 (true), 0 (false)

NUMPADAPPLICATION 1 (true), 0 (false)

LIGHTSCREEN (true), 0 (false)

DISPLAYCONTROLS 1 (true), 0 (false)

NRCMODE 1 (true), 0 (false)

NRCLANG usascii, frenchcanadian

Keywords for Digital VT Valid Setting(s)

MODE vt52, vt100, vt101, vt102, vt220, vt320, vt420

SCREENROW 24, 25, 36, 48

COLUMNS 80, 132

BITCONTROL 7, 8

DESTRUCTIVEBS 1 (true), 0 (false)

ANSWERBACK string

GISEXTENSION 1 (true), 0 (false)

DISPLAYCONTROLSMODE 1 (true), 0 (false)

LOCALECHO 1 (true), 0 (false)

LINEWRAP 1 (true), 0 (false)

NEWLINE 1 (true), 0 (false)

NUMPADAPPLICATION 1 (true), 0 (false)

CURSORKEYAPP 1 (true), 0 (false)

LIGHTSCREEN 1 (true), 0 (false)

EMULCONFIG, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

336

Keywords for TVI 925/950 Valid Setting(s)

MODE Full Duplex, Half Duplex, Block, Local

LINESPERPAGE 24, 48, 96

COLUMNS 80, 132

NUMBEROFPAGES 1, 2, 4

MODEL TV925, TV950

ANSWERBACK string

LIGHTSCREEN 1 (true), 0 (false)

DISPLAYCONTROLS 1 (true), 0 (false)

LOCALEDITKEYS 1 (true), 0 (false)

Keywords for WYSE Valid Setting(s)

MODE wyse50, wyse60

ENDOFBLOCK uscr, crlfetx

COMMMODE full, block, half, halfblock

CLEARONWIDTHCHANGE 1 (true), 0 (false)

LOCALECHO 1 (true), 0 (false)

LINEWRAP 1 (true), 0 (false)

RECEIVECR 1 (true), 0 (false)

AUTOSCROLL 1 (true), 0 (false)

SOUNDS 1 (true), 0 (false)

MARGINBELL 1 (true), 0 (false)

ANSWERBACK string

EMULCONFIG, continued

3 C
om

m
ands

337

EMULCONFIG, continued

If the AT&T 4425 Client Option is installed, these keywords are available:

Keywords for AT&T4425 Valid Setting(s)

RETURNKEYSENDS CR, LF, CRLF

COLUMNS 80, 132

LOCALECHO 1 (true), 0 (false)

AUTOWRAP 1 (true), 0 (false)

ANSWERBACK string

NEWLINEONLINEFEED 1 (true), 0 (false)

DISABLEAUXPRINTMODE 1 (true), 0 (false)

If the HP 700/94 Client Option is installed, these keywords are available:

Keywords for HP 700/94 Valid Setting(s)

BELL 1 (true), 0 (false)

INVERSEBACKGROUND 1 (true), 0 (false)

XMITFNCTN 1 (true), 0 (false)

INHEOLWRP 1 (true), 0 (false)

INHDC2 1 (true), 0 (false)

AUTOLF 1 (true), 0 (false)

TABSPACES 1 (true), 0 (false)

WARNINGBELL 1 (true), 0 (false)

LOCALECHO 1 (true), 0 (false)

SPOW 1 (true), 0 (false)

INHHNDSHK 1 (true), 0 (false)

ESCXFER 1 (true), 0 (false)

RETURNENTER 1 (true), 0 (false)

MODEL HP700/92, HP700/94

COLUMNS 80, 132

STARTCOL 1 – 80

LINEPAGE line, page

BLOCKMODE 1 (true), 0 (false)

NUMPADTAB tab, return, enter

DECIMALTYPE (HP 700/94 only) US, EUR

PRINT all, fields

IMPDECDIGITS (HP 700/94 only) 0 – 9

TRANSMIT (HP 700/94 only) all, modified

ATTRF1 N, L, T

ATTRF2 N, L, T

ATTRF3 N, L, T

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

338

EMULCONFIG, continued

Keywords for HP 700/94 Valid Setting(s), continued

ATTRF4 N, L, T

ATTRF5 N, L, T

ATTRF6 N, L, T

ATTRF7 N, L, T

ATTRF8 N, L, T

LABELF1 string (0 – 16 characters)

LABELF2 string (0 – 16 characters)

LABELF3 string (0 – 16 characters)

LABELF4 string (0 – 16 characters)

LABELF5 string (0 – 16 characters)

LABELF6 string (0 – 16 characters)

LABELF7 string (0 – 16 characters)

LABELF8 string (0 – 16 characters)

STRINGF1 string

STRINGF2 string

STRINGF3 string

STRINGF4 string

STRINGF5 string

STRINGF6 string

STRINGF7 string

STRINGF8 string

AUTOLF 1 (true), 0 (false)
(on-screen function key)

BLOCKMODE 1 (true), 0 (false)
(on-screen function key)

DISPLAYFUNCTIONS 1 (true), 0 (false)
(on-screen function key)

FORMATMODE* 1 (true), 0 (false)
(on-screen function key)

KEYBOARDLOCK* 1 (true), 0 (false)
(on-screen function key)

LINEMODIFY* 1 (true), 0 (false)
(on-screen function key)

MEMORYLOCK* 1 (true), 0 (false)
(on-screen function key)

MODIFYALL* 1 (true), 0 (false)
(on-screen function key)

REMOTEMODE 1 (true), 0 (false)
(on-screen function key)

* when using these keywords with the GETEMULCONFIG function, the state of these on-
screen keys can only be correctly returned when the session is connected; when the session
is not connected these keywords will always return “FALSE”, even if set to “TRUE”.

3 C
om

m
ands

339

EMULCONFIG, continued

If the Tandem 6530 Client Option is installed, the following keywords and valid settings are
available:

Keywords for Tandem 6530 Valid Setting(s)

EXEC_FUNCTION 1 (true), 0 (false)

RETURN_FUNCTION 1 (true), 0 (false)

BELL_COLUMN 0 (disables)

 1-80

ALLOWHOSTCOLORS 1 (true), 0 (false)

EM3270_MODE 1 (true), 0 (false)

LOCAL_TRANSMIT_COLUMN 1-80

BLOCK_TYPE_AHEAD 1 (true), 0 (false)

CI_ERROR_RESPONSE no_response, error_msg_only, del_symbol_
only, del_symbol_and_error_msg

NATIONAL_LANGUAGE_SUPPORT_8_BIT 1 (true), 0 (false)

LANGUAGE_8 Westeurp_8 (also known as Latin_1_8), Cyril-
lic_8, or Greek_8

NATIONAL_LANGUAGE_SUPPORT_7_BIT 1 (true), 0 (false)

LANGUAGE_7 USASCII, French_7, German_7, Spanish_7,
UK_7, Swedish_7, Danish_7, Norwegian_7,
Belgian_7, Portuguese_7

AUX1 or AUX2 none, printer, file, device

AUX1_DEVICE or AUX2DEVICE File name or device name (up to 256 charac-
ters)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

340

EMULCONFIG, continued

If the IBM TN3270 Client Option is installed, the following keywords and valid settings are
available:

Keywords for TN3270 Valid Setting(s)

FS3270_TermType IBM3278, IBM3279

FS3270_TermModel 2, 3, 4, 5

FS3270_ExtAttrib 1 (true), 0 (false)

FS3270_OEMReply 1 (true), 0 (false)

FS3270_AltSize 1 (true), 0 (false)

FS3270_Sound 1 (true), 0 (false)

FS3270_Notify 1 (true), 0 (false)

FS3270_TypeAhead 1 (true), 0 (false)

FS3270_LongName String, A sequence of up to eight characters, which
describe the session and its connection.

FS3270_LUName A sequence of up to eight characters. The name must
be unique among other logical unit names, is case sen-
sitive, and can consist of numbers, uppercase letters,
and special characters (such as the following symbols:
percent %, dollars $, number #, and at sign @). This
name is not required, unless DCS is connecting via the
Microsoft SNA Server connector.

FS3270_CharacterSet This string is not case sensitive, but the characters
should match the names in the list box.

 Austrian/German, Austrian/German CECP, Belgian,
Belgian CECP, Canadian Bilingual, Canadian Bi-
lingual CECP, Danish, Danish CECP, English- UK,
English- US, English- US (Old), English- US C370
CECP, English- US C370 CECP V2, English- US
CECP, Finnish, Finnish CECP, French, French CECP,
Italian, Italian CECP, Netherlands, Netherlands CECP,
Norwegian, Norwegian CECP, Portuguese, Portuguese
CECP, Spanish CECP, Spanish Speaking, Spanish
Speaking CECP, Swedish, Swedish CECP, Swiss
French, Swiss French CECP, Swiss German, Swiss
German CECP

FS3270_Uppercase 1 (true), 0 (false)

FS3270_AutoSkip 1 (true), 0 (false)

FS3270_ConvertNulls 1 (true), 0 (false)

FS3270_DisplayNulls 1 (true), 0 (false)

FS3270_RespectNumeric 1 (true), 0 (false)

FS3270_GraphicalOIA 1 (true), 0 (false)

FS3270_TLS yes (enabled)

3 C
om

m
ands

341

EMULCONFIG, continued

If the IBM TN5250 Client Option is installed, the following keywords and valid settings are
available:

Keywords for TN5250 Valid Setting(s)

FS5250_TermModel 2, 5

FS5250_Sound 1 (true), 0 (false)

FS5250_Notify 1 (true), 0 (false)

FS5250_TypeAhead 1 (true), 0 (false)

FS5250_LongName String, A sequence of up to eight characters, which
describe the session and its connection.

FS5250_CharacterSet This string is not case sensitive, but the characters
should match the names in the list box.

 Austrian/German, Austrian/German CECP, Belgian,
Belgian CECP, Canadian Bilingual, Canadian Bi-
lingual CECP, Danish, Danish CECP, English- UK,
English- US, English- US (Old), English- US C370
CECP, English- US C370 CECP V2, English- US
CECP, Finnish, Finnish CECP, French, French CECP,
Italian, Italian CECP, Netherlands, Netherlands CECP,
Norwegian, Norwegian CECP, Portuguese, Portuguese
CECP, Spanish CECP, Spanish Speaking, Spanish
Speaking CECP, Swedish, Swedish CECP, Swiss
French, Swiss French CECP, Swiss German, Swiss
German CECP

FS5250_UpperCase 1 (true), 0 (false)

FS5250_DisplayNulls 1 (true), 0 (false)

FS5250_GraphicalOIA 1 (true), 0 (false)

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause applies the emulation configuration settings to a particular session win-
dow.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

342

Comments

The keywords correspond to parameters available on the Emulations tab of the Session Prop-
erties dialog. This command, therefore, allows you to set these parameters through the DCS
script language rather than using the dialog box.

If the WinHandle is not specified, the emulation configuration settings are applied to the ac-
tive session window.

The ERROR function returns TRUE if the WinHandle or String keyword is invalid.

Example

In this example:

EMULCONFIG “Columns=80”

the command sets the emulator screen column width to 80.

EMULCONFIG, continued

3 C
om

m
ands

343

END

END

The END command specifies the end of a command block.

Arguments

The END command takes no arguments.

Comments

The commands in the command block must be preceded by a BEGIN command.

Also see: BEGIN command

Example

This script example:

.

.

.
RECORD READ 0
WHILE NOT EOF ()
BEGIN
DISPLAY @R0 | “^M”
RECORD READ 0
END
.
.
.

assumes a table has been defined with the TABLE DEFINE command earlier in the script. In
this script segment shown, the BEGIN and END commands are used to define a block of com-
mands that execute repeatedly as long as the WHILE command is TRUE.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

344

EXECUTE

EXECUTE Target

The EXECUTE command restarts script execution with a script or script routine (as if you had
stopped the script and selected Execute on the Script menu).

Arguments
Target

The Target argument is specified by either a near target (usually a routine in the current script)
or a far target (usually another script or a routine in another script).

Comments

The execution of an EXECUTE command clears any existing resources created during script
execution (variables, tables, etc.).

Example

In this example:

IF RADIOGROUP (1) = 3
EXECUTE “values*add_values”

if the third radio button in RADIOGROUP 1 (one) is selected, execution branches to the far
target values*add_values. This causes execution to resume in the script values at the
label add_values.

3 C
om

m
ands

345

FILE CLOSE

FILE CLOSE WINDOW WinHandle

The FILE CLOSE command terminates the text transfer process initiated by a LOGTOFILE com-
mand.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

Example

In this example:

DIAL ‘5552222’
PERFORM login_sequence
LOGTOFILE ‘ONLINE.TXT’
PERFORM get_data
FILE CLOSE

DCS logs onto the dial-up service and prepares to capture incoming data. When all the data
has been received, the FILE CLOSE command saves the data in the file ONLINE.TXT and
then closes the file.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

346

FILE COMPRESS

FILE COMPRESS FileName

The FILE COMPRESS command converts an eight-data-bits-per-byte file into a seven-data-bits-per-
byte file.

Arguments

FileName

The FileName argument is a string specifying the file to be compressed. The FileName argu-
ment must specify a valid file name for your system.

Comments

The line length is limited to a maximum of 130 characters, and all control characters (except
carriage returns) are converted to ASCII characters. The FILE COMPRESS command converts
a binary file to an ASCII text file, allowing it to be transferred by a protocol that utilizes only
seven data bits.

The ERROR function returns TRUE if DCS cannot compress the file. DCS will not compress
the file if it:

 Cannot open the file (for example, if the file does not exist)

 Cannot open a temporary file (for example, if there is not enough free space on your
hard drive)

 Cannot replace the contents of the original file (for example, if the file is read-only),

 If either a read or write error occurs during the compression.

Example

See the FILE ENCRYPT and the FILE DECOMPRESS commands.

3 C
om

m
ands

347

FILE COPY

FILE COPY Source TO Destination APPEND

The FILE COPY command copies the contents of the source file to the destination file, creating the
destination file if it does not exist.

Arguments
Source

The Source argument is a string specifying the file containing the data to be copied. The
Source argument must specify a valid file name for your system.

TO

The TO clause allows the Destination argument to be specified for the Source file. The clause
is composed of the keyword TO and the Destination argument.

Destination

The Destination argument is a string specifying the file to which the data is to be copied. The
Destination argument must specify a valid file name for your system.

APPEND

The optional APPEND keyword causes the data to be appended to the existing contents of the
destination file. If APPEND is not included, DCS clears the content of the existing file before
copying the contents of the source file.

Comments:

The ERROR function returns TRUE if the source file does not exist.

Example

In this example:

*moveFiles ($SourceFile, $DestPath, #Erase)
ARGUMENTS ($NextFile)
$NextFile = ROUTE ($SourceFile)
WHILE NOT ERROR ()
BEGIN
FILE COPY $NextFile TO $DestPath
IF #Erase FILE
FILE DELETE $DestPath
$NextFile = Next ()
END

the WHILE NOT ERROR subroutine takes a source file specification ($SourceFile), a
destination path ($DestPath), and a Boolean flag (#Erase), and copies the source files to
the specified directory (with an option to delete the source file).

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

348

FILE CREATENAME

FILE CREATENAME FileName TYPE Type DEFAULT String TITLE TitleText NOCREATE

The FILE CREATENAME command displays the Save As dialog listing the available files, and prompts
for the name of the file to create. The file name is stored in a string variable.

Arguments

FileName

The FileName argument is a string variable in which DCS stores the file name entered in the
Save As dialog box displayed for this command. If you enter a file name which did not previ-
ously exist, DCS stores the new file name in the FileName argument and create an empty file
in the current working directory.

If you enter a file name which exists in the current directory, DCS asks you whether it should
replace the contents of the file located in the directory. If you click the Yes button, DCS
deletes the previous contents of the file and place the file name in the FileName variable. If you
click the No button, DCS puts a null character into the FileName variable.

However, if you have included the optional NOCREATE keyword with this command, DCS
does not ask you whether it should delete the contents of previously existing files. With the
NOCREATE keyword, DCS opens the file to allow you to append characters to or to delete
characters from the file using the TABLE and RECORD commands.

TYPE Type

The optional TYPE clause lists only files of a particular type in the Save As dialog displayed for
this command. If you do not include this clause, DCS lists files of all types. The TYPE argu-
ment is a string that specifies the type of files to list.

The TYPE argument must have the following format:

“FileDescription1#FilterSpec1#FileDescription2#FilterSpec2#…”

Each element of this string must end with a number sign (#). FileDescriptionn and Filter-
Specn are the elements of the string, and a FilterSpecn element and its numeral sign must
follow each FileDescriptionn element and its numeral sign. The FileDescriptionn and the
FilterSpecn elements form a unit, such that FileDescription1 is associated with FilterSpec1,
and that FileDescription2 is associated with FilterSpec2, and so on.

The text contained in a FileDescriptionn element appears in a List of Files of Type drop-down
list box. A FilterSpecn element is composed of characters DCS uses as a criterion to determine
which file names in a directory to display in the File Name list box. For example, when you se-
lect the text from FileDescription1 in the List of Files of Type drop-down list box, DCS uses
the characters from FilterSpec1 to determine which files to show in the File Name list box,
and similarly with FileDescription2, DCS uses the characters from FilterSpec2, and so on.

The FilterSpec1 element will become the default text for the File Name edit text box in the
file open dialog box displayed for this command, if you have not included the DEFAULT clause
in the command.

3 C
om

m
ands

349

The format of the characters in a FilterSpecn element must be valid for your system. Wildcard
characters, the asterisk and the question mark, are acceptable. For example, FilterSpecn might
be one of the following:

.D Displays all of the file names whose extension start with D.

M*.TXT Displays all text file names which start with M.

L?????.DC* Displays all file names which begin with L and have five characters after the
L and whose extensions start with DC.

DEFAULT String

The optional DEFAULT clause directs DCS to display the contents of the String argument in
the File Name edit text box when DCS initially displays the Save As dialog for this command.
If you have not included the DEFAULT clause, DCS will display the FileSpec1 element from
the TYPE clause (if you have included the TYPE clause in the command) or will leave the File
Name edit text box empty initially. The String argument must be a valid file name for your
system. Do not place wildcard characters in the String argument.

TITLE TitleText

The optional TITLE clause directs DCS to display the contents of the TitleText argument
in the title bar of the Open dialog displayed for this command. The TitleText argument is a
string specifying the text for the title bar.

NOCREATE

If you have include the optional NOCREATE keyword with this command, DCS does not ask
you whether it should delete the contents of previously existing files. With the NOCREATE
keyword, DCS opens the file to allow you to append characters to or to delete characters from
the file using the TABLE and RECORD commands.

Comments

The ERROR function returns TRUE if you decide not to create a file. For example, if you se-
lect the Cancel button in the Open dialog DCS displays, or if you select a file name that exists
in a directory and you choose not to overwrite the file, the ERROR function returns TRUE.

A file name and its path may have a maximum of 256 characters.

FILE CREATENAME, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

350

Example

This command:

FILE CREATENAME $FileName TYPE “Data Files (*.DAT)#\
.DAT#Mail Files (TXT)#M.TXT#Scripts (Text & \
Task)#*.DC*#” TITLE “DCS’s Files”

displays the Save As dialog . By default, DCS selects Data Files (*.DAT) in the List Files
of Type drop-down list box, displays the text *.DAT in the File Name edit text box, and
displays the file names with a DAT extension contained in the current working directory. The
title of the displayed Open dialog box is DCS Files. When you place a file name in the File
Name edit text box and then select the OK button, DCS creates an empty file and gives it a
name based on the characters in the edit text box, places the new file in the directory you have
selected in the Directories list box, and then places the name of the file in the $FileName
variable.

This command:

FILE CREATENAME $file TYPE “*.DCP”

opens a Save As dialog which displays a list box containing all files with a DCP file extension
in the current directory. When a file is selected, or a new file name has been entered, the file
name is stored in the string variable $file.

FILE CREATENAME, continued

3 C
om

m
ands

351

FILE DECOMPRESS

FILE DECOMPRESS FileName

The FILE DECOMPRESS command restores a file compressed with the FILE COMPRESS command
to its original state.

Arguments

FileName

The FileName argument is a string specifying the file to be decompressed. The FileName argu-
ment must specify a valid file name for your system.

Comments

The ERROR function returns TRUE if DCS cannot decompress the file. DCS will not decom-
press the file if it:

 Cannot open the file (for example, if the file does not exist)

 Cannot open a temporary file (for example, if there is not enough free space on your
hard drive)

 Cannot replace the contents of the original file (for example, if the file is read-only)

 If a read or write error occurs during the decompression.

Example

See the FILE ENCRYPT command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

352

FILE DECRYPT

FILE DECRYPT FileName Key

The FILE DECRYPT command modifies the contents of the specified encrypted file to be readable.

Arguments

FileName

The FileName argument is a string specifying the file to be decrypted. The FileName argu-
ment must specify a valid file name for your system.

Key

The Key argument is a string used for file decryption. It must be the same string specified as
the Key argument in the FILE ENCRYPT command.

Comments

The ERROR function returns TRUE if :

 The file is not encrypted

 The file does not exist

 The password is incorrect

 ENCRYPT.DLL cannot load (for example, if your computer has little free memory)

 DCS cannot create a temporary file

 A read or write error occurs during the decryption

 DCS cannot overwrite the original file (for example, if the file is read-only).

Example

See the FILE ENCRYPT command.

3 C
om

m
ands

353

FILE DELETE

FILE DELETE FileName

The FILE DELETE command deletes the specified file or directory.

Arguments

FileName

The FileName argument is a string specifying the file (or directory) to be deleted. The File-
Name argument must specify a valid file name for your system.

Comments

The ERROR function returns TRUE if the file does not exist.

Example

See the FILE COPY command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

354

FILE ENCRYPT

FILE ENCRYPT FileName Key

The FILE ENCRYPT command modifies the contents of the specified file, making it appear to be
unreadable unless decrypted using the FILE DECRYPT command.

Arguments

FileName

The FileName argument is a string specifying the file to be encrypted. The FileName argu-
ment must specify a valid file name for your system.

Key

The Key argument is a string, which must be used as the Password argument of a FILE DE-
CRYPT command in order to decrypt the file.

Comments

The ERROR function returns TRUE if:

 The file does not exist

 ENCRYPT.DLL cannot load (for example, if your computer has little free memory)

 DCS cannot create a temporary file

 A read or write error occurs during the encryption

 DCS cannot overwrite the original file (for example, if the file is read-only).

Example

In this example:

FILE ENCRYPT “MYFILE.DCP” “secretcode”
FILE COMPRESS “MYFILE.DCP”
FILE SEND BINARY “MYFILE.DCP”
.
.
.
FILE RECEIVE BINARY “MYFILE.DCP”
FILE DECOMPRESS “MYFILE.DCP”
FILE DECRYPT “MYFILE.DCP” “secretcode”

a script file is encrypted to encode its contents and compressed so it can be sent using a text
transfer. Later, at the FILE RECEIVE command, the host returns the file. For DCS to use the
script file, it must first be decompressed and then decrypted.

3 C
om

m
ands

355

FILE OPENNAME

FILE OPENNAME FileName TYPE Type DEFAULT String TITLE TitleText

The FILE OPENNAME command displays a file open dialog box listing the available files and prompts
you for the name of a file to open. The command then stores the file name in a string variable.

Arguments

FileName

The FileName argument is a string variable that stores the file name entered in the Open
dialog displayed for this command.

TYPE Type

The optional TYPE clause lists only files of a particular type in the Open dialog displayed for
this command. If you do not include this clause, DCS will list files of all types. The Type argu-
ment is a string specifying the type of files for DCS to list.

The Type argument must have the following format:

“FileDescription1#FilterSpec1#FileDescription2#FilterSpec2#…”

Each element of this string must end with a number sign (#). FileDescriptionn and Filter-
Specn are the elements of the string, and a FilterSpecn element and its numeral sign must
follow each FileDescriptionn element and its numeral sign. The FileDescriptionn and the
FilterSpecn elements form a unit, such that FileDescription1 is associated with FilterSpec1,
and that FileDescription2 is associated with FilterSpec2, and so on.

The text contained in a FileDescriptionn element will appear in a List of Files of Type drop-
down list box. A FilterSpecn element is composed of characters DCS uses as a criterion to
determine which file names in a directory to display in the File Name list box. For example,
when you select the text from FileDescription1 in the List of Files of Type drop-down list
box, DCS uses the characters from FilterSpec1 to determine which files to show in the File
Name list box, and similarly with FileDescription2, DCS uses the characters from FilterSpec2,
and so on.

The FilterSpec1 element will become the default text for the File Name edit text box in the
file open dialog box displayed for this command, if you have not included the DEFAULT clause
in the command.

The format of the characters in a FilterSpecn element must be valid for your system. Wildcard
characters, the asterisk and the question mark, are acceptable. For example, FilterSpecn might
be one of the following:

.D Displays all of the file names whose extension start with D.

M*.TXT Displays all text file names which start with M.

L?????.DC* Displays all file names which begin with L and have five characters after the
L and whose extensions start with DC.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

356

DEFAULT String

The optional DEFAULT clause displays the contents of the String argument in the File Name
edit text box when the File Open dialog displays for this command. If you have not included
the DEFAULT clause, DCS will display the FileSpec1 element from the TYPE clause (if you
have included the TYPE clause in the command) or will leave the edit text box empty initially.
If you want the contents of the String argument to appear in the File Name edit text box, the
String argument must be a valid file name and should not contain any wildcard characters.

If the String argument contains a valid path, DCS uses that path as the default directory from
which to display files.

TITLE TitleText

The optional TITLE clause directs DCS to display the contents of the TitleText argument
in the title bar of the Open dialog displayed for this command. TheTitleText argument is a
string specifying the text for the title bar.

Comments

The ERROR function returns TRUE when you cancel the Open dialog DCS displays for this
command.

Example

This command:

FILE OPENNAME $FileName TYPE “Data Files (*.*)# *.DAT#” \
Default “*.DAT” TITLE “Data Files”

displays an Open dialog. By default, DCS selects Data Files (*.DAT) in the List Files of Type
drop-down list box, displays the text *.DAT in the File Name edit text box, and displays in the
File Name list box the files with a DAT extension contained in the current working directory.
The title of the Open dialog that DCS displays is “Data Files”. When you enter a file name
in the File Name edit text box and then select OK , DCS places the name of the file in the
$FileName variable.

FILE OPENNAME, continued

3 C
om

m
ands

357

FILE PAUSE

FILE PAUSE

The FILE PAUSE command temporarily suspends the text transfer initiated by the active LOGTOFILE
command, until a FILE RESUME command is executed, or New on the File menu is selected.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

The FILE PAUSE command takes no arguments.

Example

In this example:

DIAL
PERFORM login
;connects and performs login to remote system
LOGTOFILE “VACATION.TXT”
;captures data from host to the file VACATION.TXT
PERFORM OAG
;perform commands that retrieve data from OAG System
FILE PAUSE
;pause the text file transfer
PERFORM checkmail
;performs commands that retrieve new mail from host sys-
tem
FILE RESUME
;resumes the test file transfer
PERFORM hotel
;performs commands that retrieve hotel information from
the hosts system
FILE CLOSE “VACATION.TXT”
;terminates the file transfer

DCS logs onto an online system and begins saving the session in the file VACATION.TXT.
After performing the OAG subroutine, DCS stops recording the session and executes the
checkmail subroutine. When the FILE RESUME command executes, DCS resumes recording
the session until it saves and closes VACATION.TXT.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

358

FILE RECEIVE BINARY

FILE RECEIVE REMOTE BINARY FileName AS Dest ASCII BINARY CRLF NOCRLF
NEITHER APPEND WINDOW WinHandle

The FILE RECEIVE BINARY command prepares DCS to receive the specified file using the binary file
transfer protocol specified in the Session Properties of the active session.

Arguments

REMOTE

The optional REMOTE keyword causes the FILE RECEIVE BINARY command to issue the
Kermit GET command to a Kermit server on a non-3270 remote host. The Kermit binary
transfer protocol must be specified for the session before executing the FILE RECEIVE BI-
NARY command with the REMOTE keyword.

For the Kermit protocol, if the remote system is in server mode then you must use the key-
word REMOTE .

BINARY FileName

The FileName argument is a string specifying the file in which to store the incoming file. The
FileName argument must specify a valid file name for your system.

The FileName argument might be in one of the following formats:

CMS: HostFileName HostFileType HostFileMode

TSO: HostFileName HostMemberName Password

The FileName argument must be the same as the file name on the remote system for the Ker-
mit protocol only. You may rename the file on your PC using the AS Dest clause.

The Kermit, YModem, and ZModem transfer protocols support transfers of multiple files, or
batch transfer. To receive multiple files, you should set the FileName argument to an empty
string (“”), not a wildcard string (*.*).

AS Dest

The AS clause is an optional argument for transfers involving non-3270 terminal emulations,
but is required for transfers involving 3270 emulations. This clause allows you to save the file
under a name different from the name on the remote system. The Dest argument is a string
specifying the name under which the received file is stored. The Dest argument must specify a
valid file name on your system.

When DCS emulates a non-3270 terminal, the command only recognizes this clause when
you have also configured the active session window to use the Kermit transfer protocol as its
binary transfer protocol. When the Kermit protocol is not configured for a session window, or
when you do not include the AS clause, DCS saves the file under the same name that the file
had on the remote system.

3 C
om

m
ands

359

ASCII

The optional ASCII keyword is for IND$File transfers only. This keyword specifies an
EBCDIC to ASCII translation for text files before a text file is stored on the local computer.
If the option is not included, the file is not translated. Do not include this option if the file is
already in ASCII format.

CRLF

The optional CRLF keyword is for IND$File transfers only. This keyword directs DCS to re-
place all end of record marks with a carriage return character followed by a line feed character.
If you do not include this keyword, end of record marks are removed and not replaced.

APPEND

The optional APPEND keyword is for IND$File transfers only. This keyword causes DCS to
append the incoming file to the existing contents of the specified file and to override the record
length and record format specifications. If it is not included, DCS clears the existing contents
of the file before the file is received. This option is used only when transferring files to a TSO
or VM/CMS command processor.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to receive a file using the file transfer configuration of a
particular session.

Comments

If the remote system does not begin sending the specified file within 30 seconds, DCS aborts
the transfer and displays a dialog box indicating it aborted the transfer.

For systems using the Kermit protocol, the FILE RECEIVE REMOTE BINARY command is
equivalent to a Kermit GET command.

The ERROR function returns TRUE if you abort the transfer, or if DCS aborts the transfer,
due to too many transmission errors. When there is an error, DCS places text describing the
error in the Result system variable.

If the WINDOW clause is not included in the command, the file is received through the current
session.

FILE RECEIVE BINARY, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

360

Example

In this example:

SET BINARYTRANSFERS ZMODEM
FILE RECEIVE BINARY “MEMO.TXT”

DCS prepares to receive all incoming files via ZModem, and then download the file MEMO.
TXT.

In this example:

SET BINARYTRANSFER KERMIT
SEND “KERMIT”
WAIT STRING “KERMIT-32>”
SEND “SERVER”
WAIT STRING “COMMAND”
FILE RECEIVE REMOTE BINARY “LOG.COM” AS “LOG.TXT”
KERMIT FINISH
SEND “EXIT”

DCS instructs the remote system to enter Kermit server mode. When the remote system is in
Kermit server mode, your system can send commands to perform operations, such as viewing
or transferring files, on the remote system. In this example, DCS instructs the remote system
to send the file LOG.COM. The AS LOG.TXT clause directs DCS to rename the received file
on your PC. The KERMIT FINISH command instructs the remote system to leave server mode,
and the string EXIT causes the remote system to exit the Kermit application.

FILE RECEIVE BINARY “File” “data” “A1” AS “data.TXT”

In this example, DCS prepares to receive a file from a remote system with the CMS environ-
ment. DCS receives the specified host file and stores it in DATA.TXT.

File Receive Binary “datfile” “” “pass” AS “datfile.tx”

In this example, DCS prepares to receive a file from a remote system running the TSO envi-
ronment. The command directs DCS receives the host file and stores it in datfile.tx. Since
the host file is not from a partitioned data set (the host file has no member name) a null string
(“”) stands for the HostMemberName argument.

FILE RECEIVE BINARY, continued

3 C
om

m
ands

361

FILE RENAME

FILE RENAME Source TO Destination

The FILE RENAME command changes the name of the file specified by Source to the name specified
by Destination.

Arguments

Source

The Source argument is a string specifying the file to be renamed. The Source argument must
specify a valid file name for your system.

Destination

The Destination argument is a string specifying a new file name. The Destination argument
must specify a valid file name for your system.

Comments

The ERROR function returns TRUE if the source file does not exist or if the destination file
already exists.

Example

In this example:

IF EXISTS (“OLDDATA”)
FILE DELETE “OLDDATA”

FILE RENAME “MYDATA” TO “OLDDATA”
FILE RECEIVE BINARY “MYDATA”

the current contents of the file MYDATA is protected by renaming the file to OLDDATA be-
fore receiving a binary file of the same name.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

362

FILE RESUME WINDOW WinHandle

The FILE RESUME command restarts the text transfer suspended by a FILE PAUSE command. It
affects only the active LOGTOFILE command.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause is composed of both the WINDOW keyword and the WinHan-
dle argument. The WinHandle argument is an integer identifying a particular child window.

Comments

If the active LOGTOFILE command is performed in line count mode, script execution pauses
until DCS transfers the specified number of lines or until the transfer is completed.

Example

See the FILE PAUSE command.

FILE RESUME

3 C
om

m
ands

363

FILE SEND BINARY

FILE SEND REMOTE BINARY FileName AS Hostname ASCII BINARY CRLF
NOCRLF APPEND WINDOW WinHandle

The FILE SEND BINARY command directs DCS to send the specified file using the binary transfer
protocol specified by the active settings.

Arguments

REMOTE

The optional REMOTE keyword causes the FILE SEND BINARY command to issue the KER-
MIT PUT command to a Kermit server on a remote host. The Kermit binary transfer protocol
must be specified for the session window before executing the FILE SEND BINARY command
with the REMOTE keyword. For the Kermit file transfer protocol, you must use the REMOTE
keyword if the remote system is in server mode.

BINARY FileName

The FileName argument is a string specifying the file to send. The FileName argument must
specify a valid file name for your system.

AS Hostname

Only use the AS clause with the Kermit protocol. The ASclause is an optional argument for
transfers involving non-3270 terminal emulations, but is required for transfers involving 3270
emulations. This clause allows you to save the file on the remote system under a name different
from the current file name. The Hostname argument is a string specifying the name to give
the file on the remote system. The Hostname argument must specify a valid file name for the
remote system.

When DCS emulates a non-3270 terminal, the command only recognizes this clause when
you have also configured the active session window to use Kermit as its file transfer protocol.
When the Kermit protocol is not configured for a session window, or when you do not include
the AS clause, DCS saves the file using its current file name.

The Hostname argument might be in one of the following formats:

CMS: HostFileName HostFileType HostFileMode

TSO: HostFileName HostMemberName Password

If you do not include the AS clause, the remote system will save the file under the same name
it had on your PC.

ASCII

This option is for IND$File transfers only. The optional ASCII keyword specifies an EBCDIC
to ASCII translation. If it is not included, the file is not translated.

CRLF

This option is for IND$File transfers only. The optional CRLF keyword directs DCS to replace
each end of line delimiter (a carriage return character followed by a line feed character) with an
end of record mark.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

364

APPEND

This option is for IND$File transfers only. The optional APPEND keyword causes DCS to
append the outgoing file to the existing contents of the specified file and to override the record
length and record format specifications. If it is not included, DCS clears the existing contents
of the file before receiving the file. This option is included when transferring files to a remote
system with a TSO or VM/CMS command processor.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to send a file as configured in a specific session.

Comments

If the remote system does not respond to your transmission within 30 seconds, DCS will
display a dialog box indicating that it aborted the file transfer.

For systems using the Kermit protocol, the FILE SEND REMOTE BINARY command is
equivalent to a KERMIT PUT command.

The ERROR function returns TRUE if you abort the transfer, or if DCS aborts the transfer
due to too many transmission errors. When there is an error, DCS will place text describing
the error in the Result system variable.

If the WINDOW clause is not included in the command, the file is sent through the current
session.

Example

In this example:

FILE SEND BINARY “TEST.FIL” AS “TEST” “FILE” “A1”

DCS sends a file to a 3270 host running a CMS environment. The command directs DCS to
send the file TEST.FIL to the host and to store it in the file TEST FILE A1.

In this example:

SET BINARYTRANSFERS YMODEM
FILE SEND BINARY “C:\DCSERIES*.TXT”

DCS sends several files via YModem in batch mode. All files in the DCSERIES directory on
drive C: that have a TXT file extension will be sent.

FILE SEND BINARY, continued

3 C
om

m
ands

365

In this example:

SET BINARYTRANSFERS XMODEM
SET BAUDRATE 14400
CONNECT
PERFORM login
FILE SEND BINARY “DCDATA.TXT”

DCS sends the file DCDATA.TXT after the appropriate binary transfer settings have been
selected.

In this example:

SET BINARYTRANSFERS KERMIT
SEND “KERMIT”
WAIT STRING “KERMIT-32>”
SEND “SERVER”
WAIT STRING “COMMAND”
FILE SEND REMOTE BINARY “LOGIN.COM” AS “LOGIN.GDT”
KERMIT FINISH
SEND “EXIT”

DCS instructs the remote system to enter Kermit server mode. When the remote system is in
Kermit server mode, your system can send commands to perform operations, such as viewing
or transferring files, on the remote system. DCS sends the file LOGIN.TXT to the remote sys-
tem, and instructs the remote system to name the file to LOGIN.GDT. The KERMIT FINISH
command instructs the remote system to leave Kermit server mode, and the EXIT string causes
the remote system to exit the Kermit application.

In this example:

FILE SEND BINARY “datafile.TXT” AS “datafile” “” “pass”

DCS sends a file to a remote system running the TSO environment. The command directs
DCS to send the file DATAFILE.TXT to the remote system, stores it in the file named
DATAFILE, and uses the password pass. The null string (“”)is used for the HostMember-
Name argument since the host file is not from a partitioned data set (it has no member name).

FILE SEND BINARY, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

366

FKEYS Display

The FKEYS command controls whether the session toolbar is displayed in a session window.

Arguments
Display

The Display argument is specified by one of the following keywords: SHOW or HIDE. The
SHOW keyword directs DCS to display the session toolbar. The HIDEkeyword directs DCS to
remove the function key display.

Comments

You may still access hidden session toolbar buttons by using the proper accelerator key se-
quence.

Example

In this example:

LOAD “LOGON.SES”
FKEYS SHOW
PERFORM OnlineSession
FKEYS HIDE

DCS loads the session file LOGON.SES. The session toolbar buttons are displayed for use
during the online session that follows, and then hidden when the session is completed.

FKEYS

3 C
om

m
ands

367

GENERALCONFIG

GENERALCONFIG String WINDOW WinHandle

The GENERALCONFIG command sets the value of a parameter used to configure general session op-
tions.

Arguments

String

The String argument represents a single “keyword” followed by the assignment operator (=)
and a valid setting. Together, the keyword and the setting are used to configure the general
properties of the active session.

Keywords for General tab Valid Setting(s)

AutoConnect 1 (true), 0 (false)

SaveWindowPosition 1 (true), 0 (false)

StartupScript string of valid path of a compiled script file

DisplayDisconnectConfirmation 1 (true), 0 (false)

DisplaySaveConfirmation 1 (true), 0 (false)

DisplayConnectInformation 1 (true), 0 (false)

DisplayErrorInformation 1 (true), 0 (false)

Sound 1 (true), 0 (false)

Comments

The keywords correspond to parameters available on the General tab of the Session Proper-
ties dialog. This command, therefore, allows you to set these parameters through the DCS
script language rather than using the dialog box.

The ERROR function returns TRUE if the WinHandle or String keyword is invalid.

Changes made via scripting to these options apply only to the active or specified session and
are not saved unless the session is saved.

Note: Because scripting tasks receive a lower processing priority than other application
activity, a session which is already configured to autoconnect may do so upon
opening before it receives the command from a script to disable the autoconnect
feature.

Also see: GETGENERALCONFIG function

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

368

Example

In this example:

LOAD
GENERALCONFIG “AutoConnect=false”
GENERALCONFIG “StartupScript=p:\public\scripts\
vaxlogin.dct”
GENERALCONFIG “DisplaySaveConfirmation=false”
SAVE “vax1.ses”

a new session is loaded and configured with the autoconnect option turned off. A login script
(which can be used to specify the host system and initiate the connection) is specified to start
once the session opens. Finally, the save confirmation dialog is disabled and the session is
saved.

GENERALCONFIG, continued

3 C
om

m
ands

369

GOTO

GOTO Target

The GOTO command causes script execution to branch to the specified target.

Arguments

Target

The Target argument can be specified by a near target (usually a routine in the local script) or a
far target (another script, or a routine in another script).

Example

In this example:

SET %listbox LISTBOX ()
IF %listbox < 0
GOTO error_display
ELSE
BEGIN
RECORD READ 0 AT %listbox
DIAL @R0.2 RETRY 1 DELAY 45
END
.
.
.
*error_display
.
.
.

if no item is selected in the list box, the GOTO command branches to an error handling rou-
tine.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

370

HANGUP

HANGUP WINDOW WinHandle

The HANGUP command directs the modem to disconnect the telephone line.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to disconnect the phone line for a specific session.

Comments

If the WINDOW clause is not included in the command, DCS will disconnect the phone line
of the active session window.

Example

In this example:

IF CONNECT ()
HANGUP
DIAL ‘5551234’

if DCS is currently connected, these commands direct DCS to disconnect the line before at-
tempting to connect using another phone number.

3 C
om

m
ands

371

IF

IF Boolean Command ELSE Command

The IF command evaluates the specified Boolean argument, executing the command list if the Boolean
argument is TRUE.

Arguments

Boolean

The Boolean argument specifies the Boolean to be evaluated.

Command

The Command argument specifies a logical command (either a single command or a com-
mand block).

ELSE Command

The optional ELSE clause executes the commands in the ELSE command list if the Boolean
argument is FALSE. If the ELSE clause appears on the same line as the IF command, it must
be preceded by a comma. The Command argument specifies a logical command (either a
single command or a command block).

Example

In this example:

RECORD READ 0 at 0
WHILE (TRUE)
BEGIN
IF EOF ()
BEGIN
LEAVE
END
RECORD READ 0
END
DISPLAY “PROCESS COMPLETE^M”
CANCEL

if the end of the file is reached, DCS displays the specified string in the window and the script
terminates.

In this example:

IF EDITTEXT (1) = “” OR EDITTEXT (2) = “”
PERFORM no_response
ELSE
PERFORM launch_app

if either edit text field is empty, DCS performs the subroutine no_response. If neither
field is empty, DCS performs the subroutine launch_app.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

372

INCREMENT

INCREMENT IntVar

The INCREMENT command increases the value of the specified numeric variable by one.

Arguments

IntVar

The IntVar argument specifies the integer variable to be incremented. An integer variable must
be specified, not a real variable. Specifying a real variable causes a syntax error.

Example

In this example:

%index = 0
RECORD READ 0 at 0
WHILE NOT EOF ()
BEGIN
DISPLAY (%index, 0) “Record “ | STR (%index) | @R0
INCREMENT %index
RECORD READ 0
END

the INCREMENT command is used as a counter to display the record number and the con-
tents of the record in the session window.

3 C
om

m
ands

373

KERMIT COPY

KERMIT COPY SourceFile TO DestinationFile WINDOW WinHandle

Sends the Kermit copy command packet to the remote (server) system. The remote system must sup-
port Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

SourceFile

The SourceFile argument is a string specifying the file to copy on the remote system and must
be a valid file name on that system.

TO DestinationFile

The TO clause specifies the file name for the copy of the SourceFile . The clause is composed
of the TO keyword and the DestinationFile argument. The DestinationFileargument is a string
specifying the file name of the copy of the file on the remote system and must be a valid file
name on that system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT COPY command is performed upon the active
session.

Example

In this example:

KERMIT COPY “OLDFILE.C” TO “NEWFILE.C”

a copy of OLDFILE.C is created on the remote system and named NEWFILE.C.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

374

KERMIT DIRECTORY

KERMIT DIRECTORY DirectoryName WINDOW WinHandle

Sends the Kermit directory command to the remote (server) system. The remote system must support
Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DirectoryName

The DirectoryName argument is a string specifying the directory name for which the contents
will be listed.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT DIRECTORY command is performed upon the
active session.

Example

In this example:

KERMIT DIRECTORY “Documnts”

the KERMIT DIRECTORY command lists all of the files contained in the DOCUMNTS direc-
tory on the remote system.

3 C
om

m
ands

375

KERMIT ERASE

KERMIT ERASE FileName WINDOW WinHandle

Sends the Kermit erase command to a remote system. The Kermit erase command deletes a file from a
directory on the remote system. The remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

FileName

The FileName argument is a string specifying the name of the file to be deleted from the
remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT ERASE command is performed upon the active
session.

Example

In this example,

KERMIT ERASE “FAX.DAT”

the KERMIT ERASE command deletes the file FAX.DAT from the remote system.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

376

KERMIT FINISH

KERMIT FINISH WINDOW WinHandle

The KERMIT FINISH command sends a Kermit finish packet to the remote Kermit server. The remote
system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must select the Kermit binary file transfer protocol for the session before using this com-
mand. DCS displays all responses from the remote system in the session window. The remote
system must be in Kermit server mode.

If no window handle is specified, the KERMIT FINISH command is performed upon the active
session.

Example

In this example:

SEND “KERMIT”
KERMIT DIRECTORY
KERMIT FINISH

DCS sends a Kermit finish packet to the remote Kermit server after displaying a directory.

3 C
om

m
ands

377

KERMIT FREESPACE

KERMIT FREESPACE WINDOW WinHandle

The KERMIT FREESPACE command displays the number of free bytes on the remote system. The
remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT FREESPACE command is performed upon the
active session.

Example

In this example:

KERMIT FREESPACE

DCS displays the number of free bytes on the remote system in a session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

378

KERMIT HELP

KERMIT HELP HelpTopic WINDOW WinHandle

The KERMIT HELP command displays a brief summary of instructions on a topic of the remote sys-
tem’s operation. The remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

HelpTopic

The HelpTopic is a string specifying the name of a topic included in the online help of the
remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT HELP command is performed upon the active
session.

Example

In this example:

KERMIT HELP “DELETE”

DCS displays the help text concerning file deletion on the remote system in a session window.

3 C
om

m
ands

379

KERMIT LOGOUT

KERMIT LOGOUT WINDOW WinHandle

The KERMIT LOGOUT command sends a Kermit logout packet to the remote Kermit server. The
remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must select the Kermit binary file transfer protocol for the session before performing this
operation. The remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT LOGOUT command is performed upon the
active session.

Example

In this example:

SET BINARYTRANSFERS KERMIT
FILE SEND BINARY REMOTE “MEMO.TXT”
KERMIT LOGOUT

DCS sends a Kermit logout packet to the remote system after completing the file transfer.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

380

KERMIT MESSAGE

KERMIT MESSAGE ReceiverName MessageText WINDOW WinHandle

The KERMIT MESSAGE command sends a short message to an account on the remote system. The
remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

ReceiverName

The ReceiverName is a string specifying a valid user name on the remote system.

MessageText

The MessageText is the string sent to the user name on the remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT MESSAGE command is performed upon the
active session.

Example

In this example:

KERMIT MESSAGE “FARRELLT” “HELLO”

DCS sends the message “Hello” to the user FARRELLT on the remote system.

3 C
om

m
ands

381

KERMIT NEWDIRECTORY

KERMIT NEWDIRECTORY DirectoryName WINDOW WinHandle

The KERMIT NEWDIRECTORY command changes the current working directory on the remote
system to a new directory. The remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DirectoryName

The DirectoryName argument is a string specifying the new working directory on the remote
system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing
this operation. DCS displays all responses from the remote system in the session window. The
remote system must be in Kermit server mode.

If no window handle is specified, the KERMIT NEWDIRECTORY command is performed
upon the active session.

Example

In this example:

KERMIT NEWDIRECTORY “LETTERS”

the command changes the current working directory to the directory LETTERS.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

382

KERMIT RENAME

KERMIT RENAME OldFileName TO NewFileName WINDOW WinHandle

The KERMIT RENAME command changes the name of a file on the remote system to a new name.
The remote system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

OldFileName

The OldFileName argument is a string, specifying the name of the file to change on the remote
system.

TO NewFileName

The TO clause specifies the name to which the file will be renamed. The TO clause is composed
of the TO keyword and the argument, NewFileName. The NewFileNameis a string argument,
specifying the new name for the file on the remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing this
operation. DCS displays all responses from the remote system in a session window. The remote
system must be in Kermit server mode.

If no window handle is specified, the KERMIT RENAME command is performed upon the
active session.

Example

In this example:

KERMIT RENAME “DATA2A” TO “STCKQUOT”

the file DATA2A is renamed STCKQUOT on the remote system.

3 C
om

m
ands

383

KERMIT TYPE

KERMIT TYPE FileName WINDOW WinHandle

The KERMIT TYPE command displays the contents of a file located on the remote system. The remote
system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

FileName

The FileName argument is a string specifying a file on the remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing this
operation. DCS displays all responses from the remote system in a session window. The remote
system must be in Kermit server mode.

If no window handle is specified, the KERMIT TYPE command is performed upon the active
session.

Example

In this example:

KERMIT TYPE “TEXT1”

DCS displays the contents of the file named TEXT1 in the session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

384

KERMIT WHO

KERMIT WHO UserName WINDOW WinHandle

The KERMIT WHO command issues the Kermit who command to the remote system. The remote
system must support Kermit server mode.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

UserName

The UserName argument is an optional string argument. If it is not included in the com-
mand, the command displays the names of all the people logged into the remote system. If the
argument is included, the command displays a message indicating the status of a particular
person on the remote system.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

You must specify the Kermit binary file transfer protocol for the session before performing this
operation. DCS displays all responses from the remote system in a session window.

The results of this command vary from system to system. The implementation of the Kermit
who command may be different from one system to the next. The remote system must be in
Kermit server mode.

If no window handle is specified, the KERMIT WHO command is performed upon the active
session.

Example

In this example:

KERMIT WHO

DCS displays a list of all the persons logged into the remote system in the session window.

3 C
om

m
ands

385

KEY

KEY Modifier1 Key1 Definition WINDOW WinHandle

The KEY command remaps a key (or key combination) to a new definition. The definition can be a
meta key or a string.

Arguments

Modifier1

The optional Modifier1 argument is specified by one or more of the following keywords: ALT,
CTRL, LEFTSIDE, RIGHTSIDE, or SHIFT.

Key1

The Key1 argument specifies a valid key name. Valid keys are letters (A through Z), digits (0
through 9), or one of the key names listed in the table below.

Definition

The Definition argument can be specified as a string.

String

If a string is specified, the Definition argument consists of any valid string (literal, variable,
function, etc). Thus, you may remap a key to send a string rather than a character. When a
remapped key is pressed in an active session window, the string is sent to the remote system.
When a remapped key is pressed in an active script or memo window, the string is inserted in
the script or memo at the current cursor location.

String Command

^$B BREAK

^$C DIAL

^$D WAIT DELAY

^$E EXECUTE

^$H HANGUP

^$L LEVEL

^$P PERFORM

^$R SET RESULT

Note: Embedded control characters must begin the string or be the only characters in
the string.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

386

Key Name Indicated Key
Add Plus Key (Num Pad)
Alt Alternate Key
Back Backspace Key
Cancel Cancel Key
Capital Cap Lock Key
Clear Clear Key
CtrlKey Control Key
Decimal Period Key (Num Pad)
Delete Delete Key
Divide Slash Key / (Num Pad)
Down Down Arrow Key
End End Key
Escape Escape (Esc) Key

F1 Function Key One
through through
F16 Function Key Sixteen

Home Home Key
Insert Insert Key
Left Left Arrow Key
Multiply Asterisk Key (Num Pad)
Next Next Key
NumLock Num Lock Key

NumPad0 Zero Key (Num Pad)
through
NumPad9 Nine Key (Num Pad)

Pause Pause Key
Print Print Key
Prior Prior Key
Reset Reset Key
Return Return (or Enter) Key
Right Right Arrow Key
ScrLock Scroll Lock Key
Select Select Key
Separator Comma Key (Num Pad)
ShiftKey Shift Key
Space Space Bar
Subtract Minus Key (Num Pad)
Tab Tab Key
Up Up Arrow Key
186 Semicolon and Colon Key
187 Equals and Plus Key
188 Comma and Less Than Key
189 Hyphen and Underline Key

KEY, continued

3 C
om

m
ands

387

Key Name Indicated Key
190 Period and Greater Than Key
191 Slash and Question Mark Key
192 Grave and Tilde Key
219 Left Bracket and Left Brace Key
220 Backslash and Bar Key
221 Right Bracket and Right Brace Key
222 Quote and Double Quote Key

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to apply the keyboard remapping to a key map attached to a
particular session window.

Comments

If the WINDOW clause is not included in the command, the remapping is applied to the cur-
rent session.

Example

In this example:

KEY SHIFT G “GOTO”

when the [SHIFT]+[G] key combination is pressed, the string GOTO is inserted at the current
insertion point.

In this example:

KEY SHIFT SPACE “^$B”

when the [SHIFT]+[SPACE] key combination is pressed, a break is sent to the remote system.
The host system determines the break length and behavior.

In this example:

KEY Back CHR (127)

the CHR function returns the delete character (the character that the [DELETE] key sends),
and the KEY command changes the character that the [BACKSPACE] key sends to the delete
character.

KEY, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

388

In this example:

KEY LEFTSIDE INSERT “^[[2J”

this command assigns the escape sequence ^[[2J to the middle cursor cluster [INSERT] key.
When VT-100 is the session’s current emulation, this character sequence erases the terminal
screen.

Also see: Escape sequences for your emulation in the DCS 9 Online Reference or
specific Client Option Help.

In this example:

KEY RIGHTSIDE HOME “^[OP”

this command assigns the escape sequence ^[[OP to the keypad [HOME] key. When a VT-
220 emulation is active for a session, this character sequence makes the [HOME] key act like a
[PF1].

In this example:

KEY NUMPAD5 “^G”

assigns a ^G (bell) character to the keypad [5] key.

In this example:

KEY G “^$P ‘ringtest*ring’”
WAIT RESUME

*ring
DISPLAY “^G”
RETURN

after this script is executed, when the [G] key is pressed, the script will start executing at the far
label, *ring, in the RINGTEST script.

KEY, continued

3 C
om

m
ands

389

KEYBOARD

KEYBOARD State WINDOW WinHandle

The KEYBOARD command determines whether keystrokes are transmitted to the local or remote
system.

Arguments

State

The State argument is specified by one of the following keywords:

Keyword Description

BUFFER Directs DCS to buffer keystrokes until a KEYBOARD LOCK, KEYBOARD
UNLOCK, or KEYBOARD ECHO command is executed.

ECHO Directs DCS to transmit keystrokes to the local system only.

LOCK Directs DCS to transmit keystrokes to neither the local nor the remote sys-
tem.

UNLOCK Directs DCS to transmit keystrokes to both the local and remote systems.

WAIT Directs DCS to buffer keystrokes until a KEYBOARD LOCK, KEYBOARD
UNLOCK, KEYBOARD ECHO, or WAIT command is executed.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to change the keyboard state for a particular session.

Comments

If the WINDOW clause is not included in the command, the keyboard state is changed for the
active session.

Example

In this example:

LOAD “TRANSET”
KEYBOARD LOCK
FILE SEND BINARY “SCRIPT1.DCP”
KEYBOARD UNLOCK

the keyboard is locked while the file transfer is performed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

390

KEYMAP LOAD

KEYMAP LOAD FileName

The KEYMAP LOAD command loads the keymap file specified by the file name.

Arguments

FileName

The FileName argument is a string specifying the keymap file to be loaded. The FileName
argument must specify a valid file name for your system.

Comments

The ERROR function returns TRUE if the specified file does not exist.

To load the default keymap for the emulation, use the KEYMAP RESET command.

3 C
om

m
ands

391

KEYMAP RESET

KEYMAP RESET

The KEYMAP RESET command returns the keyboard and keymapping to the default settings for the
emulation.

Arguments

The KEYMAP RESET command takes no arguments.

Example

KEY SHIFT SPACE “^$B20”
KEY ALT L “Login”
PERFORM “login.dcp *label”
KEYMAP RESET

In this example, the [SHIFT]+[SPACE] and [ALT]+[L] key combinations are modified. After
performing the target script branch, the keyboard is reset and both key combinations return to
their default settings.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

392

KEYMAP SAVE

KEYMAP SAVE FileName

The KEYMAP SAVE command saves the current keymap file with a specified file name.

Arguments

FileName

The FileName argument is a string specifying the keymap file to be saved. The FileName argu-
ment must specify a valid file name for your system.

Comments

The file cannot be saved to the default keymap; a saved keymap must always be given a specific
file name.

3 C
om

m
ands

393

LAUNCH

LAUNCH Application Command, ... ContinueScript

The LAUNCH command starts the specified program as a separate application running under Win-
dows.

Arguments

Application

The Application argument is a string specifying the file to launch. The file must have a com-
mand extension appropriate to the operating system (such as EXE , COM, or BAT).

Command, ...

The optional Command argument is a string specifying a list of command line instructions
sent to the specified application. The commands must be in the launched application’s terms
and separated by commas.

ContinueScript

The optional ContinueScript argument indicates whether DCS should launch the application
and continue executing the script, or launch the application and halt the script until the target
application closes. It requires one of the following keywords:

Keyword Description

SYNCHRONOUS If you include the SYNCHRONOUS keyword in the command, DCS
pauses the script while the application is running.

ASYNCHRONOUS If you include the ASYNCHRONOUS keyword in the command, DCS
continues the script after starting the application.

If the ContinueScript argument is not included, the script continues after starting the ap-
plication.

Comments

To launch the application, you must specify the complete path to the application or list the
path in AUTOEXEC.BAT.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

394

Example

This script segment:

LAUNCH “EXCEL.EXE”
IF ERROR ()

BEGIN
DISPLAY “Can’t launch Excel”,
BEEP 1
CANCEL

End

starts Excel and then tests whether DCS was able to start it. If Excel did not start, DCS places
a message in the active session window, beeps the system bell once, and stops the script.

LAUNCH $appname SYNCHRONOUS

DCS starts the application and then performs the equivalent of a WAIT RESUME command
to pause the script. When the target application is no longer running, DCS continues the
script with the command following the LAUNCH command.

LAUNCH $appname ASYNCHRONOUS

DCS starts the target application and continues with the script command following the
LAUNCH command.

LAUNCH, continued

3 C
om

m
ands

395

LEAVE

LEAVE

The LEAVE command branches execution past the last command in the currently executing command
block.

Arguments

The LEAVE command takes no arguments.

Comments

The LEAVE command may be executed from within the command block of a WHILE or
SWITCH loop.

Example

In this example:

SET %counter 0
WHILE %counter < 10
BEGIN
RECORD READ 0
IF EOF ()
LEAVE
DISPLAY (%counter, 0) @R0
INCREMENT %counter
END
DISPLAY “No More Records”

DCS is directed to read and display ten records from table zero. If the end of the file is reached
before ten records are read, the LEAVE command branches execution to the line following the
END command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

396

LEVEL

LEVEL KeyLevel

The LEVEL command selects a level on a session toolbar.

Arguments

KeyLevel

The KeyLevel argument is a numeric (from 1 to 4) specifying the toolbar level.

Comments

DCS maintains four levels on a toolbar. Each level contains eight buttons consisting of the title
and action.

Note: This command does not apply to the AT&T 605 emulation.

Example

In this example:

FKEYS HIDE
LEVEL 1
@F1 = “Today’s Pass^M”
@T1 = “password”
@F2 = “MyName^M”
@T2 = “User ID”
LEVEL 2
@F1 = “Go Favorite^M”
@T1 = “My Favorite”
FKEYS SHOW

In this example, DCS hides the session toolbar buttons for the active session window and then
configures three buttons: two on level one and one on level two. After the buttons are config-
ured, the script displays the toolbar.

3 C
om

m
ands

397

LIBRARY CALL

LIBRARY CALL LibraryReference Procedure (Parameter, …)

The LIBRARY CALL command branches execution to the specified Dynamic Link Library (DLL)
procedure.

Note: The calling convention of the library function being used is determined by the routine
name. If the name has an underscore as the first character (“_”) then the ‘C’ program-
ming language convention is used. Otherwise, the function will be called using the stan-
dard WINAPI convention (sometimes referred to as the Pascal convention). It is VERY
IMPORTANT that the calling convention be correct or unpredictable results will occur,
i.e. the application will crash.

Arguments

LibraryReference

The LibraryReference argument specifies the library containing the procedure. The argument
is either a string specifying the name of the file containing the procedure, or a numeric variable
containing the reference value returned by the LIBRARY LOAD command. If the DLL refer-
enced is not loaded, the LIBRARY CALL command loads, uses, and then unloads the specified
library.

Procedure

The Procedure argument is a string specifying the name of the procedure to perform, as it
appears in the DLL.

(Parameter, …)

The optional (Parameter, …) argument specifies one or more strings, numerics, or Booleans,
enclosed in parentheses and separated by commas, to be passed to the procedure. The passed
parameters should correspond to the parameter types expected by the DLL procedure. Param-
eters are passed by reference only.

Comments

When calling DLLs from script, the parameters are passed according to the following rules:

1. All variables are passed by reference.

 Also see: Parameter Passing section in Chapter 1 Introduction

2. The variable types follow the following syntax:

Type Variable Prefix in Script SDK (C)

Boolean # LPINT (int far *)

Integer % LPLONG (long far *)

Real ! see below (double far *)

String $ LPSTR (char far *)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

398

 LPINT, LPLONG, and LPSTR are defined as shown by the WINDOWS.H file in the
Windows SDK. The SDK does not have a definition for double far *.

3. Pascal or C calling convention is determined by the routine name. If it has an under-
score as the first character (“_”) then it will be called using the C convention. Otherwise,
it will be called with the Pascal convention. Please note that the Pascal calling conven-
tion is the usual method for calling Windows functions.

4. The return value expects a LONG value. DCS takes the four bytes returned by a func-
tion and copies the bytes into the Result system variable.

Also see: Windows Software Development Kit (SDK) for more information on the use and
development of Dynamic Link Libraries (DLLs).

 TYPEDLIBRARYCALL function

Example

In this example:

LIBRARY LOAD “lib1.DLL” %lib1
;loads Dynamic Link Library
LIBRARY CALL %lib1 “addProc” ($file, %size)
LIBRARY CALL %lib1 “deleteProc” ($file, %size)
LIBRARY CALL “lib2.DLL” “printProc” ($file)
LIBRARY CALL %lib1 “saveProc” ($file)
;above commands perform functions of the library
LIBRARY UNLOAD %lib1

the script accesses four procedures in two DLLs with two different methods. Since the script
accesses three procedures in LIB1.DLL, the script opens the DLL once with the LIBRARY
LOAD command and then uses the DLL with the LIBRARY CALL command. The LIBRARY
CALL command refers to the DLL by the variable %lib1. When a script needs to access a DLL
many times, this method uses less time since the script does not have to open the DLL repeat-
edly with the LIBRARY CALL command. Finally, the LIBRARY UNLOAD command takes the
DLL out of memory.

When the script uses LIB2.DLL, it is using another method of accessing a DLL. Since the
script accesses only one procedure in LIB2.DLL, the script uses only the LIBRARY CALL
command once to open (referring to the DLL by the DLL’s file name), to access, and then to
close the library. This method uses less memory than the first method.

LIBRARY CALL, continued

3 C
om

m
ands

399

The following is a C language function extracted from a DLL:

typedef double far *LPDOUBLE
long FAR PASCAL MyFunction (LPINT lpiBoolean,
LPLONG lpiInteger,
LPDOUBLE lpdReal,
LPSTR lpszString)
{
return ((long) *lpiInteger);
}

To call the DLL function, you might employ the following script command which:

LIBRARY CALL “C:\WINDOWS\MyDLL.DLL” “MyFunction” \
(#Boolean, %Integer, !Real, $String)
%r = Ord (Substr (Result (), 1,1) + \
Ord (Substr (Result (), 2,1) * 0x100 + \
Ord (Substr (Result (), 3,1) * 0x10000+ \
Ord (Substr (Result (), 4,1) * 0x1000000

calls the DLL function and passes it four parameters (#Boolean, %Integer, !Real, $String). The
DLL returns a LONG value, which is placed in DCS’s result system variable. The RESULT
function makes the return value of the DLL available to the script. The SUBSTR function
extracts the first four digits of the string representation of the number. The ORD function then
converts the substring to an integer. The integer is then placed in the integer variable %r.

LIBRARY CALL, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

400

LIBRARY LOAD

LIBRARY LOAD LibraryName LibraryReference

The LIBRARY LOAD command loads the specified Dynamic Link Library (DLL) into memory. It may
also return a numeric value which the LIBRARY CALL and LIBRARY UNLOAD commands can use to
reference the DLL.

Arguments

LibraryName

The LibraryName argument specifies the name of the file containing the desired DLL. It must
specify a valid file name for your system.

LibraryReference

The optional LibraryReference argument is a numeric variable into which DCS stores a
numeric reference value returned by the LIBRARY LOAD command. All LIBRARY CALL and
LIBRARY UNLOAD commands may then use this reference variable to refer to the loaded
library. If it is not included, all references to the loaded library must be made with a string
specifying the file name of the library.

If the number stored in the variable is less than zero or a small (2 digit) number, DCS was not
able to load the library.

Comments

This command allows a commonly used DLL to be loaded before multiple calls are made to
the routines it contains. Normally, the LIBRARY UNLOAD command is used when the DLL is
no longer needed. You may load up to three DLLs concurrently.

Example

See the LIBRARY CALL command.

3 C
om

m
ands

401

LIBRARY UNLOAD

LIBRARY UNLOAD LibraryReference

The LIBRARY UNLOAD command removes the specified Dynamic Link Library (DLL) from memory.

Arguments

LibraryReference

The LibraryReference argument specifies the library to be unloaded. It is either a string speci-
fying the name of the library file, or a numeric variable containing the reference value returned
by the LIBRARY LOAD command.

Example

See the LIBRARY CALL command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

402

LINENUMBERS

LINENUMBERS

The LINENUMBERS command is a compiler directive which directs DCS to include numbers in a
compiled script. The numbers indicate the line where a command in a script text file is located.

Arguments

The LINENUMBERS command takes no arguments.

Comments

The LINENUMBERS command takes effect only when DCS compiles a script. The line
number information in a compiled script may help you debug a script. When you compile a
script with the LINENUMBERS command, and if you have included the DEBUG and SHOW
commands in the script, the DEBUG command will write the line number information to a
debugging file, and any script error dialogs will display the line number of the offending script
command rather than the command index.

The LINENUMBERS command does not affect the status of the Include Line Numbers op-
tion in the Compile dialog.

See also the COMPILE command and the DEBUG command.

Example

When you compile a script containing these commands:

LineNumbers
Debug “DBG0131.TXT”
Show
.
.
.

DCS will automatically place line numbers in the compiled script (you do not need to check
the Include Line Numbers check box in the Compile dialog box). When the script runs, it cre-
ates the file DBG0131.TXT and writes each executing command and function to the file. The
script precedes each command it places in the file with the command’s line number.

LineNumbers
Compile “MYSCRIPT.DCP”
.
.
.

This script segment causes DCS to compile MYSCRIPT.DCP. As DCS compiles the script,
DCS includes line number information. This script segment is similar to checking (enabling)
the Include Line Numbers option before you start the compilation of a script.

3 C
om

m
ands

403

LOAD

LOAD FileName

The LOAD command loads the session file specified by the optional file namey.

Arguments

FileName

The optional FileName argument is a string specifying the session file to be loaded. The File-
Name argument must specify a valid file name for your system.

If you specify the FileName argument as a question mark (?), DCS will display the Open
dialog, allowing you to select a session file during script execution.

If you do not include the optional FileName argument, DCS loads a new session file contain-
ing the default settings.

Comments

The ERROR function returns TRUE if the specified file does not exist.

Since only session files can be loaded using the LOAD command, you do not need to include
the SES file extension in the FileName argument.

The LOAD command does not execute if the Boolean argument of the SET TERMCLOSE
command evaluates to FALSE. When the SET TERMCLOSE command has a false argument,
you may not close an open session window. Opening or loading a session file implies that you
want to close an open session file or window.

Example

In this example:

LOAD “SESSNAME”
IF ERROR ()
BEGIN
DISPLAY “Could not load session file”
CANCEL
END
PERFORM login_sequence

DCS attempts to load the session file SESSNAME before performing the login sequence. If the
session file cannot be loaded, DCS displays an error message in the session window and cancels
execution.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

404

LOGTOFILE

LOGTOFILE FileName WINDOW WinHandle

The LOGTOFILE command activates the option to log incoming data to a file. A second instance of
the command directs DCS to stop logging data and close the file.

Arguments
FileName

The FileName argument is a string specifying the name of the file to which the incoming data
will be logged. You must enter a file name; DCS will not prompt for one and if no name is
specified no log will be written.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The optional WinHandle argument is an integer identifying a particular session window.

If no window handle is specified, this command applies to the active session window.

Comments

This command has the same effect as selecting Session > Log Incoming Data > Log to File.
Use the command a second time to stop logging incoming data and close the file.

Use the FILE PAUSE and FILE RESUME commands to pause and resume file logging.

3 C
om

m
ands

405

MENU

MENU
 Option
 Option...
MENU END

The MENU command is used to reconfigure a DCS application menu, allowing for the addition or
restriction of available menu options. The MENU command is followed by one or more menu options.
You must follow the Option arguments with a MENU END command, indicating the end of the menu
definition.

Arguments

Option

The Option argument is any of the following menu commands:

ITEM POPUP SEPARATOR

If the Option argument is not included, only the DCS application control menu is shown.
(The control menu is also called the System menu and is located in the upper left hand corner
of the window.)

Comments

DCS restores its standard menu bar upon executing a MENU CANCEL command, or upon the
end of script execution.

Example

See each individual menu option command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

406

MENU CANCEL

MENU CANCEL

The MENU CANCEL command removes the menu bar created by a script, restoring DCS’s standard
menu bar.

Arguments

The MENU CANCEL command takes no arguments.

Comments

DCS restores its standard menu bar upon executing a MENU CANCEL command, or upon the
end of script execution.

Example

In this example:

MENU
POPUP “File” SYSTEM 2
POPUP “Edit” SYSTEM 4
POPUP “Session” SYSTEM 11
POPUP “View” SYSTEM 6
POPUP “Windows” SYSTEM 10
POPUP “Help” SYSTEM 9
MENU END
PERFORM setup
MENU CANCEL
PERFORM receive_files

the menu bar definition removes the Tools and Script menus from the menu bar. The MENU
CANCEL command restores these options before the receive_files routine is performed.

3 C
om

m
ands

407

MENU DELETE ITEM

MENU DELETE ITEM IntPopup IntItem

The MENU DELETE ITEM command removes an item from a popup menu.

Arguments

IntPopup

The IntPopup argument is an integer expression indicating the popup menu from which the
item will be deleted.

The first popup menu on the left side of the menu bar is popup menu 1 (one).

IntItem

The IntItem argument is an integer expression indicating the position of the item to be deleted.
The first item in the popup menu is item 1 (one). When counting or numbering items, be sure
to count both menu items and separators.

Comments

If there is no menu defined via the MENU command, the ERROR function returns TRUE.

Once an item is deleted, all items following the deleted item move up one position in the
popup menu. For example, if a popup menu contains five items and item three is deleted,
items four and five immediately move up one position in the menu, becoming items three and
four.

Example

In this script segment:

MENU DELETE ITEM 2 3
MENU DELETE ITEM 2 3

the third and fourth menu selections (Send and Clear Screen) are removed from the second
popup menu (Edit) . The first line of the script removes from the Edit menu (popup menu 2)
the Send selection (item 3). The Clear Screen item in the Edit menu immediately moves up
one position and becomes the third menu selection. Therefore, to remove the Clear Screen
selection, the second line of the script again removes from the third menu selection from the
second popup menu .

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

408

MENU DELETE POPUP

MENU DELETE POPUP IntPopup

The MENU DELETE POPUP command removes a popup menu from the menu bar.

Arguments

IntPopup

The IntPopup argument is an integer expression indicating the popup menu to be deleted.

The first popup menu on the left side of the menu bar is popup menu 1 (one).

Comments

If there is no menu defined via the MENU command, the ERROR function returns TRUE.

Once a popup menu is deleted, all popup menus following the deleted menu move left one
position on the menu bar. For example, if a popup menu contains five popup menus and
menu three is deleted, menus four and five immediately move left one position on the menu
bar, becoming popup menus three and four.

Example

In this script segment:

MENU DELETE POPUP 3
MENU DELETE POPUP 3

the third and fourth popup menus, Session and Script, are removed. The first line of the script
removes the Session menu (popup menu 3) from the menu bar. The Script menu immediately
moves one position to the left and becomes the third popup menu on the menu bar. Therefore,
the second line of the script again removes the third popup menu, Script.

3 C
om

m
ands

409

MENU INSERT ITEM

MENU INSERT ITEM IntPopup IntItem StrText Enabled Checked Command

The MENU INSERT ITEM command adds an item to a popup menu.

Arguments

IntPopup

The IntPopup argument is an integer expression indicating the popup menu into which the
item will be inserted.

The first popup menu on the left side of the menu bar is popup menu 1 (one).

IntItem

The IntItem argument is an integer expression indicating the item’s position in the menu. The
first item in the popup menu is item 1 (one). When counting or numbering items, be sure to
count both menu items and separators.

StrText

The StrText argument is string indicating the name of the menu item. To assign an [Alt] +
[key] combination to the menu item, precede the letter of the [key] with an ampersand (&).
The letter appears underlined in the text of the menu item. For example, the string Actio&n
underlines the letter ‘n’ and the menu item is selected with the [Alt] + [N] key combination.

Enabled

The optional Enabled argument uses the keyword ENABLED to indicate that the menu item
is active (not dimmed), and can be selected. If this keyword is not specified in the command,
the menu item will not be enabled.

Checked

The optional Checked argument uses the keyword CHECKED to indicate the menu item
is checked and any command associated with the menu item is active. If this keyword is not
specified in the command, the menu item will appear unchecked.

Command

The Command argument is a command, or block of commands, indicating the DCS com-
mand or function executed when the menu item is selected or checked by the user.

Comments

If there is no menu defined via the MENU command, the ERROR function returns TRUE.

Once an item is inserted, all items following the inserted item move down one position in the
popup menu. For example, if a popup menu contains five items and item is inserted as item
three, existing items three, four, and five immediately move down one position in the menu,
becoming items four, five, and six.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

410

Example

MENU INSERT ITEM 3 4 “Library of Congress” ENABLED LOAD
“LIBCONG”

In this example, the menu item “Library of Congress” is added as the fourth menu
item of the third popup menu. It appears in the menu as enabled. When selected, DCS loads
the session file LIBCONG.

MENU INSERT ITEM, continued

3 C
om

m
ands

411

MENU INSERT POPUP

MENU INSERT POPUP IntPopup StrText

The MENU INSERT POPUP command adds a popup menu to the menu bar.

Arguments

IntPopup

The IntPopup argument is an integer expression indicating the popup menu to be added to the
menu bar.

The first popup menu on the left side of the menu bar is popup menu 1 (one).

StrText

The StrText argument is string indicating the name of the popup menu. To assign an [Alt] +
[key] combination to the menu item, precede the letter of the [key] with an ampersand (&).
The letter will appear underlined in the text of the popup menu. For example, the string
Li&braries will underline the letter ‘b’ and the menu item is selected by the [Alt] + [B]
key combination.

Comments

If there is no menu defined via the MENU command, the ERROR function returns TRUE.

Once a popup menu is added to the menu bar, all menus following the added menu move
right one position on the menu bar. For example, if the menu bar contains five popup menus
and a popup menu is added as menu three, existing menus three, four, and five immediately
move right one position on the menu bar, becoming menus four, five, and six.

Example

In this example:

MENU INSERT POPUP 4 “Online Li&braries”
MENU INSERT ITEM 4 1 “NYP&L” ENABLED LOAD “NYPL”
MENU INSERT ITEM 4 2 “Univ. of &Houston” ENABLED LOAD
“UOFH”
MENU INSERT ITEM 4 3 “Univ. of &Michigan” ENABLED LOAD
“UOFM”
MENU INSERT ITEM 4 4 “Library of Con&gress” ENABLED LOAD
“LIBCONG”

the popup menu “Online Libraries” is added as the fourth popup menu on the menu
bar. It can be selected with the [Alt] + [B] key combination. Four menu items are also added to
this menu, which displays when the new menu is selected.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

412

(MENU) ITEM

ITEM Text Enabled Checked Command, ...

The (MENU) ITEM command adds a menu item to the most recently added popup menu.

Arguments

Text

The Text argument is a string specifying the characters to display on the menu item.

Enabled

The optional Enabled argument is specified by one of the following keywords:

Keyword Description

ENABLED Directs DCS to allow selection of the specified item

DISABLED Directs DCS to disallow selection of the specified item

GRAYED Directs DCS to disallow selection of the specified item and display the item
in gray (or dimmed) type

Checked

The optional Checked argument is specified by one of the following keywords:

Keyword Description

CHECKED Directs DCS to place a check mark before the specified item in the menu

UNCHECKED Directs DCS to remove a check mark preceding the specified item in the
menu

Command, ...

The Command argument specifies a logical command (either a single command or a com-
mand block). Selecting the menu item executes the logical command.

Comments

If a character in the Text argument is preceded by an ampersand (&), the character appears
underlined. The menu or menu item can then be selected by pressing the [ALT] key and the
key of the underlined character simultaneously.

You may include a maximum of 200 items in a menu definition.

3 C
om

m
ands

413

Example

In this script segment:

MENU
POPUP “&Names”
ITEM “&Add...” PERFORM add_name
MENU END
WAIT RESUME

the menu item Add… performs the add_name subroutine. Through the keyboard, you can
access the Add… menu item by pressing the [ALT]+[A] key combination.

(MENU) ITEM, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

414

(MENU) POPUP

POPUP Text SYSTEM Pos

The (MENU) POPUP command adds a popup menu to the menu bar.

Arguments

Text

The Text argument is a string specifying the name of the popup menu to display.

SYSTEM Pos

The optional SYSTEM clause takes the added popup menu from DCS default defined menus.
If the clause is not included, the added popup menu bar contains no items from the system
menu bar. The Pos argument is a numeric specifying the predefined menu as defined below.

Comments

The defined SYSTEM menus are:

System Menu Active window type*

SYSTEM 1 File MAIN

SYSTEM 2 File SESSION, SCRIPT, MEMO

SYSTEM 3 Edit MEMO, SCRIPT

SYSTEM 4 Edit SESSION

SYSTEM 5 Script MAIN, MEMO, SCRIPT, SESSION

SYSTEM 6 View MAIN, MEMO, SCRIPT, SESSION

SYSTEM 7 Tools MAIN, SESSION

SYSTEM 8 Tools MEMO, SCRIPT

SYSTEM 9 Help MAIN, MEMO, SCRIPT, SESSION

SYSTEM 10 Window MEMO, SCRIPT, SESSION

SYSTEM 11 Session SESSION

SYSTEM 12 Insert MEMO

* The visible menus vary depending on which type of window is active (in focus).
MAIN refers to the DCS application window. SESSION refers to session windows,
MEMO to memo windows, and SCRIPT to a script editor window.

3 C
om

m
ands

415

Example

In this script segment:

MENU
POPUP “File” SYSTEM 1
POPUP “Edit” SYSTEM 3
MENU END

a custom menu bar is defined containing only DCS’s File and Edit menus.

(MENU) POPUP, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

416

(MENU) SEPARATOR

SEPARATOR

The (MENU) SEPARATOR command adds a menu item separator, displayed as a horizontal line, to
the popup menu.

Arguments

The SEPARATOR command takes no arguments.

Example

In this script segment:

MENU
POPUP “&Names”
ITEM “&Add ... “ PERFORM add_name
ITEM “&Delete ... “ PERFOM delete_name
SEPARATOR
ITEM “Di&splay” PERFORM display_name
MENU END
WAIT RESUME

when Add is selected on the Names menu, the add_name routine is performed. When
Delete is selected, the delete_name routine is performed. When Display is selected, the
display_name routine is performed.

3 C
om

m
ands

417

MENU UPDATE

MENU UPDATE Popup Item Text Enabled Checked

The MENU UPDATE command updates a previously defined menu option, or group of options.

Arguments

Popup

The Popup argument is a numeric specifying which popup menu is to be updated. The control
menu is specified by the integer zero.

Item

The optional Item argument is an integer specifying a menu item to update within a popup.
The first item is considered item one. When you are numbering items in a menu, include both
menu items and separators; however, you may only update menu items, not separators.

If you do not include the Item argument, the Text argument becomes the text for the menu
name, and the Enabled and Checked arguments change the state of each menu item.

Text

The optional Text argument is a string specifying the replacement text for a menu or item. If
you do not included the Item argument, the contents of the Text argument replaces the name
of the menu.

Enabled

The optional Enabled argument is specified by one of the following keywords:

Keyword Description

ENABLED Directs DCS to allow selection of the specified item

DISABLED Directs DCS to disallow selection of the specified item

GRAYED Directs DCS to disallow selection of the specified item and display the item
in gray (or dimmed) type.

If the Item argument is not specified, the Enabled argument applies the same state to all items
in the menu.

Checked

The optional Checked argument is specified by one of the following keywords:

Keyword Description

CHECKED directs DCS to place a check mark before the specified item in the menu

UNCHECKED directs DCS to remove a check mark preceding the specified item in the
menu.

If the Item argument is not specified, the Checked argument applies the same state to all
items in the menu.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

418

Comments

If there is no menu defined via the MENU command, the ERROR function returns TRUE.

Example

In this script segment:

MENU
POPUP “File” system 1
POPUP “Script” system 5
SEPARATOR
ITEM “checkme” Unchecked DISPLAY “Checkme!”
MENU END
WAIT DELAY “9”
MENU UPDATE 2 7 CHECKED
WAIT DELAY “9”

the selection checkme is added to the Script menu. After nine seconds, the script checks
(selects) the checkme item.

MENU UPDATE, continued

3 C
om

m
ands

419

NOSHOW

NOSHOW

The NOSHOW command is a compiler directive which cancels the SHOW command and removes the
display of a script command from the status bar in the DCS application window.

Arguments

The NOSHOW command takes no arguments.

Comments

The NOSHOW command can be used in conjunction with the SHOW and DEBUG com-
mands to control which command lines are written to a debug file.

Also see: SHOW command

 DEBUG command

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

420

PARSE

PARSE String StringVar1 Keyword StringVar2

The PARSE command locates the keyword in the specified string. If the string contains the keyword,
all characters preceding the keyword are stored in the first string variable, and all characters following
the keyword are stored in the second string variable.

Arguments

String

The String argument contains the string in which DCS searches for the keyword.

StringVar1

The StringVar1 argument specifies a string variable in which DCS stores all characters in the
string preceding the keyword.

Keyword

The Keyword argument specifies the string for which to search.

StringVar2

The StringVar2 argument specifies a string variable in which to store all characters in the string
that appear after the keyword.

Comments

The ERROR function returns TRUE if the string does not contain the keyword.

Example

In this example:

PARSE ‘EVANSTON, IL 60202’ $city ‘,’ $rest

the keyword is a comma (,). DCS assigns the string “EVANSTON” to the variable $city, and
assigns the string “IL 60202” to the variable $rest.

3 C
om

m
ands

421

In this example:

#Found = FALSE
$hnd = hwndlist (-1) ;child handles
WHILE $hnd != “ “
BEGIN
parse $hnd $h “ , “ $hnd
%thnd = num ($h)
IF WNDCLASS (%thnd) = 1
BEGIN
#Found = TRUE
LEAVE
END
END
IF #Found
DISPLAY “Session window Handle = “ | str (%thnd) | “^M”
ELSE
DISPLAY “Session window Handle not found. ^M”

the list of open child window handles is returned and parsed into individual handles. DCS
determines the handle of the session window.

In this example:

$str1=@r1.1
PARSE $str1 $str2 “break” $str3
@r1.2=$str2
@r1.3=$str3

In this example, two table variables (@r1.2 and @r1.3) provide the strings that precede and
folow, respectively, the keyword (“break”) that is searched for in a string supplied by the first
table variable (@r1.1).

PARSE, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

422

PERFORM

PERFORM Target (Parameter, ...)

The PERFORM command causes script execution to branch to the specified target. Execution of the
current script resumes at the command following the PERFORM command when the target script
executes a RETURN command. When used in this way, the PERFORM and RETURN commands
define a subroutine.

Arguments

Target

The Target argument specifies either a near (usually a routine in a local script) or a far target
(usually another script or a routine in another script).

(Parameter, ...)

The optional (Parameter, ...) argument specifies the parameters to be passed to the routine
identified by the Target argument. It consists of one or more strings, numerics, or Booleans.

Comments

Also see: Parameter Passing in Chapter 1 Introduction

Example

In this example:

PERFORM CompileAll (“c:\dcseries\script*.DCP”, TRUE)
.
.
.
*CompileAll ($Scripts, #Make)
ARGUMENTS ($Source)
$Source = ROUTE ($Scripts)
WHILE NOT ERROR ()
BEGIN
COMPILE $Source #Make
$Source = NEXT ()
END
RETURN

DCS creates a routine that performs a batch compile of all script files in the current directory.
The PERFORM command passes two parameters by value to the routine *CompileAll.

3 C
om

m
ands

423

PRINT CANCEL

PRINT CANCEL

The PRINT CANCEL command terminates the active print jobs.

Arguments

The PRINT CANCEL command takes no arguments.

Comments

Executing the PRINT CANCEL command does not close the currently open print channel.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

424

PRINT CLOSE

PRINT CLOSE

The PRINT CLOSE command closes the open print channel, terminating any active print jobs.

Arguments

The PRINT CLOSE command takes no arguments.

Example

See the PRINT OPEN command.

3 C
om

m
ands

425

PRINT FILE

PRINT FILE FileName LF

The PRINT FILE command prints the specified file.

Arguments

FileName

The FileName argument is a string specifying the file to print. The FileName argument must
specify a valid file name for your system.

LF

The optional LF keyword adds line feeds to all outgoing carriage returns. If it is not included,
carriage returns are printed as carriage returns only.

Comments

The file is printed according to the active parameters of the open print channel. If no print
channel is currently open, the PRINT FILE command automatically opens a print channel and
uses the default print parameters.

The ERROR function returns TRUE if the file does not exist, or if DCS cannot open the print
channel and print the file.

Example

In this example:

FILE RECEIVE BINARY “MYFILE.TXT”
PRINT FILE “MYFILE.TXT”

the newly received file, MYFILE.TXT, is printed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

426

PRINT FONT

PRINT FONT Font Point

The PRINT FONT command changes the active print font.

Arguments

Font

The optional Font argument is a string specifying a valid font face for your printer. If it is not
included, the current font is used.

Point

The optional Point argument is a numeric specifying a valid point size for the specified font. If
it is not included, the current point size is used.

Example

See the PRINT OPEN command.

3 C
om

m
ands

427

PRINT NEWLINE

PRINT NEWLINE

The PRINT NEWLINE command sends a carriage return and line feed to the printer.

Arguments

The PRINT NEWLINE command takes no arguments.

Example

In this example:

PRINT OPEN
PRINT STRING DATE () | ‘ at ‘ | TIME ()
PRINT NEWLINE
PRINT TERMINAL ON
PERFORM get_info
PRINT TERMINAL OFF
PRINT CLOSE

DCS uses the PRINT NEWLINE command to print a blank line between the header (contain-
ing the data and time) and the incoming data.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

428

PRINT NEWPAGE

PRINT NEWPAGE

The PRINT NEWPAGE command sends a form feed to the printer.

Arguments

The PRINT NEWPAGE command takes no arguments.

Example

In this example:

PRINT OPEN
PRINT FONT ‘helv’ 12
PRINT FILE ‘script1.dcp’
PRINT NEWPAGE
PRINT FILE ‘script2.dcp’
PRINT NEWPAGE
PRINT FILE ‘script3.dcp’
PRINT CLOSE

DCS sends a form feed between each file printed.

3 C
om

m
ands

429

PRINT OPEN

PRINT OPEN PORT Port DRIVER Driver TYPE Type ABORT

The PRINT OPEN command opens a print channel. DCS must open a print channel before it may
execute any other PRINT command (except the PRINT FILE command).

Arguments

PORT Port

The optional PORT clause allows you to specify the printer port. The Port argument is a string
specifying a valid printer port. If the PORT clause is not included, DCS uses the default port.

DRIVER Driver

The optional DRIVER clause allows you to specify the printer driver. The Driver argument is a
string specifying any installed printer driver. If the DRIVER clause is not included, DCS uses
the default driver.

 Note: UNC standards must be used when specifying a network printer. For example,
“\\\\primeserver\financehp” denotes use of the printer called “financehp” on the
“primeserver” system. Notice that four backslashes are used to indicate the server
name. When two backslashes are used, DCS interprets them as a single backslash
which indicates that a file name follows. The first two backslashes are required to
indicate that a system name follows.

TYPE Type

The optional TYPE clause allows you to specify the printer type. The Type argument is a
string specifying a valid printer type for the specified driver. If the TYPE clause is not includ-
ed, DCS uses the default type.

ABORT

The optional ABORT keyword directs DCS to display the Windows Abort dialog while print-
ing. This allows you to cancel a print job in progress.

Example

In this example:

PRINT OPEN PORT “LPT1:”
PRINT FONT “helv” 10
PRINT STYLE BOLD
PRINT STRING “MYSCRIPT AS OF #” | DATE ()
PRINT NEWLINE
PRINT STYLE NORMAL
PRINT FILE “MYSCRIPT.DCP”
PRINT CLOSE

a print channel is opened, a font is specified, and a header is printed. After MYSCRIPT.DCP
is printed, the print channel is closed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

430

PRINT STRING

PRINT STRING String

The PRINT STRING command prints the contents of the specified string according to active print
parameters in the open print channel.

Arguments

String

The String argument specifies the string to be printed.

Example

See the PRINT OPEN command.

3 C
om

m
ands

431

PRINT STYLE

PRINT STYLE Attribute ...

The PRINT STYLE command sets the print character attributes.

Arguments

Attribute ...

The Attribute argument is specified by one or more of the following keywords:

Keyword Description

BOLD This keyword prints characters boldface type.

ITALIC This keyword prints characters in italic type.

NORMAL This keyword directs DCS to eliminate all previously defined attributes and
prints characters according to the default style. DCS ignores all attributes
specified after NORMAL in a PRINT STYLE command.

QUALITY This keyword prints characters in letter quality type.

STRIKEOUT This keyword prints each character with a horizontal rule drawn through the
middle of the character.

UNDERLINE This keyword prints each character as underscored with a horizontal rule.

Example

See the PRINT OPEN command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

432

PRINT TABS

PRINT TABS Width

The PRINT TABS argument specifies the printed tab width.

Arguments

Width

The Width argument is a numeric specifying the number of spaces per tab. The maximum
value of the Width argument is 20.

Example

In this example:

PRINT OPEN
PRINT STYLE ‘courier’ 12
PRINT TABS 5
PRINT FILE ‘script1.dcp’
PRINT CLOSE

the PRINT TABS command specifies a printed tab width of five spaces.

3 C
om

m
ands

433

PRINT TERMINAL

PRINT TERMINAL State WINDOW WinHandle

The PRINT TERMINAL command redirects the data appearing in a session window to the printer.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

State

The optional State argument is specified by one of the following keywords:

Keyword Description

ON This keyword directs DCS to send all data received in the session window to
the printer.

OFF This keyword directs DCS not to send data received in the session window
to the printer.

PAUSE This keyword directs DCS to suspend the sending of data received in the
session window to the printer until a PRINT TERMINAL RESUME command
is executed.

RESUME This keyword resumes the PRINT TERMINAL ON command suspended by
a PRINT TERMINAL PAUSE command.

If the State argument is not included, the PRINT TERMINAL command directs DCS to toggle
the current state between ON and OFF.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

The file is printed according to the active parameters of the open print channel. If no print
channel is currently open, the PRINT TERMINAL command automatically opens a print chan-
nel and uses the default print parameters.

If a window handle is not included, the active session window is printed.

Example

In this example:

PERFORM login
PRINT TERMINAL ON
PERFORM get_prices
PRINT TERMINAL OFF

DCS captures the communications session and sends it to the printer from the moment the
PRINT TERMINAL ON command is issued until the PRINT TERMINAL OFF command
executes.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

434

QUIT

QUIT

The QUIT command stops all script execution and terminates the DCS application.

Arguments

The QUIT command takes no arguments.

Example

In this example:

DIALOG ‘System Coordinator’
BUTTON ‘Launch Excel’
BEGIN
PERFORM launch_xl
RESUME
END
BUTTON ‘Quit Excel’
BEGIN
PERFORM dde_quit
RESUME
END
BUTTON ‘Quit Script’ CANCEL
BUTTON ‘Quit DCS’ QUIT
DIALOG END
WAIT RESUME

the user is given the choice of either stopping script execution or quitting DCS.

3 C
om

m
ands

435

RECORD FORMAT

RECORD FORMAT Lines (Row1 Col1) ... (Rown Coln) WINDOW WinHandle

The RECORD FORMAT command defines a record template the RECORD SCAN command will use.
This template specifies the relative position of data fields in the session window, and in which table to
place the scanned data.

Arguments

Lines

The Lines argument is an integer specifying the number of terminal lines between the begin-
nings of consecutive data records (from the first line of record one to the first line of record
two, etc.).

(Row1 Col1) ... (Rown Coln)

The optional (Row1 Col1) ... (Rown Coln) field definitions specify the relative positions in
the record template of the desired data fields for each field in a record. Each Row coordinate is
an integer specifying the row of the starting position of desired data field, where the first row
in the record template is row zero. Each Col coordinate is a numeric specifying the column of
the starting position of desired data field, where the first column is column zero.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to define a record template for a particular session window.

Comments

If the WINDOW clause is not included in the command, the record template is defined for the
current session.

Since the length of each field is specified by the table definition, the RECORD FORMAT com-
mand needs only to specify the starting position, not the length, of each field. You may specify
a maximum of 255 field definitions.

If no field definitions are included, the RECORD SCAN command extracts field data from
the session window using an auto-scan algorithm in which DCS locates fields by searching for
columns delimited by tabs (two or more consecutive spaces).

Example

See the RECORD SCAN command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

436

RECORD READ

RECORD READ Table AT Record AT Position LENGTH Bytes

The RECORD READ command reads data from the specified table to the corresponding record buffer.
Data contained in a table cannot be directly accessed; one record at a time is accessed through the cor-
responding record buffer variable, @Rn, where n is a table number.

Arguments

Table

The Table argument is a numeric specifying the table containing the data.

 Structured Tables

AT Record

The optional AT clause allows random access of records by setting the read position
to the specified record number before performing the RECORD READ command.
The Record argument is a numeric specifying the read position, where the first re-
cord is record zero. If the AT clause is not included, the RECORD READ command
begins reading at record zero, and successive reads are performed sequentially.

After a record read is performed for a structured table, the read pointer is positioned
at the next record.

 Text Tables

AT Position

The optional AT clause allows random access of the data blocks (not text lines) by set-
ting the read position to the specified file position before performing the RECORD
READ command. The Position argument is a numeric specifying the read position,
where the first record is record zero. If the AT clause is not included, the RECORD
READ command begins reading at record zero, and successive reads are performed
sequentially.

After a record read is performed for a text table, the read pointer is positioned at the
next character (or line).

LENGTH Bytes

The optional LENGTH clause directs DCS to input a data block of the specified number of
bytes (up to 254). The Bytes argument is a numeric specifying the number of bytes to be in-
cluded in each data block. If the LENGTH clause is not included, the length of the data block
read is determined by a delimiter (a carriage return character followed by a line feed character).

3 C
om

m
ands

437

Comments

The EOF function is set to TRUE if an attempt is made to read beyond the end of the file.

Example

In this example:

TABLE DEFINE 0 FIELDS CHAR 10 CHAR 5 REAL 5
TABLE LOAD 0 FROM “DATA” AS SYLK
SET %1 0
RECORD READ 0 at 0
WHILE NOT EOF ()
BEGIN
DISPLAY (%1, 0) @R0
INCREMENT %1
RECORD READ 0
END

DCS reads all records from table 0 (zero) and displays them in the session window until it
reaches the end of the file.

In this example:

TABLE DEFINE 0 TEXT “MYDATA”
RECORD READ 0 AT 200 LENGTH 254
DISPLAY @R0

DCS reads 254 bytes of data from the file MYDATA, starting at position 200, then displays the
data in the session window.

RECORD READ, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

438

RECORD SCAN

RECORD SCAN Table WINDOW WinHandle

The RECORD SCAN command, in conjunction with the RECORD FORMAT and SELECTION com-
mands, extracts data from the session window and places it directly into a predefined table structure.
This entire process requires three steps: first, use the RECORD FORMAT command to define a virtual
record template for the data; second, use the SELECTION command to specify the region of the ses-
sion window containing the data; and third, use the RECORD SCAN command to transfer the data to
the desired table.

Arguments

Table

The Table argument is an integer specifying the table into which DCS stores the data. DCS
does not clear the existing contents of the table before adding new data.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to scan a particular session window.

Comments

If the placement of data in the session window is the same for several records on one or more
screens, you can use the RECORD SCAN command repeatedly without respecifying the record
template or selection range. Using the RECORD SCAN command is a faster and more con-
venient method of acquiring structured terminal data than using the COLLECT and PARSE
commands.

If the number of lines within the selection range exceeds the number of lines specified by the
Lines argument of the RECORD FORMAT command, DCS copies a record to the table for
each group of lines.

If no field definitions are specified by the RECORD FORMAT command, the RECORD
SCAN command extracts field data from the session window using an auto-scan algorithm in
which DCS locates fields by searching for columns delimited by tabs (two or more consecutive
spaces).

If the WINDOW clause is not included in the command, the current session will be scanned.

Example

In this example:

TABLE DEFINE 0 FIELDS CHAR 20 INT 3 REAL 7
RECORD FORMAT 4 (0 5) (0 25) (3 46)
SELECTION 6 16
RECORD SCAN 0

The name, age, and account total for each record is transferred to table 0 (zero).

3 C
om

m
ands

439

RECORD WRITE

RECORD WRITE Table AT Record AT Position LENGTH Bytes

The RECORD WRITE command writes the contents of the record buffer to the corresponding table.
DCS cannot access data contained in a table directly; it must access one record at a time through the
corresponding record buffer variable, @Rn, where n is a table number.Y

Arguments

Table

The Table argument is a numeric specifying the table to which DCS writes the data.

 Structured Tables

AT Record

The optional AT clause allows random access of records by setting the write position
to the desired record number before performing the RECORD WRITE command.
The Record argument is a numeric specifying the desired write position, where the
first record is record 0 (zero). If the AT clause is not included, the RECORD WRITE
command begins writing at the end of the table, and successive writes are performed
sequentially.

After DCS performs a record write, the write pointer is positioned at the next record.

 Text Tables

AT Position

The optional AT clause allows random access of the data blocks (not text lines) by set-
ting the write position to the specified file position before performing the RECORD
WRITE command. The Position argument is a numeric specifying the desired write
position, where the first record is record 0 (zero). If the AT clause is not included, the
RECORD WRITE command begins writing at the end of the table, and successive
writes are performed sequentially.

After DCS performs a record write, the write pointer is positioned at the next charac-
ter (or line).

LENGTH Bytes

The optional LENGTH clause directs DCS to output a data block of the specified number
of bytes (up to 254). The Bytes argument is a numeric specifying the number of bytes to be
included in each data block. If the LENGTH clause is not included, the length of the data
block written is determined by the delimiter (a carriage return character followed by a line feed
character).

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

440

Example

In this example:

TABLE DEFINE 0 FIELDS CHAR 20
DIALOG (50, 50, 200, 75) “Edit”
EDITTEXT (20, 10, 144, 10) “Enter Name:”
BUTTON (50, 50) “OK” Resume
DIALOG END
WAIT RESUME
@R0 = EDITTEXT (1)
RECORD WRITE 0

a dialog, prompting for a name, is displayed. When a name is entered, the contents of the edit
text field is written to table 0 (zero).

RECORD WRITE, continued

3 C
om

m
ands

441

REMOVE DIRECTORY

REMOVE DIRECTORY Path

The REMOVE DIRECTORY command deletes the specified directory.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Path

The Path argument is a string specifying the path of the directory to be removed.

Comments

This command fails under the following conditions:

 The directory is not empty

 The path is not valid for the computer

 The path does not end with a directory name

 The directory is the current working directory.

In each case, the ERROR function returns TRUE.

Example

This command:

REMOVE DIRECTORY “C:\DCSERIES\TEMP”

removes the directory C:\DCSERIES\TEMP.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

442

RESETSERIAL

RESETSERIAL

The RESETSERIAL command resets the serial communications port of the default session window.

Arguments

The RESETSERIAL command takes no arguments.

Comments

On occasion, it is necessary to reset the communications port after communications transac-
tions with some remote hosts.

The ERROR function returns TRUE if the command cannot reset the serial communications
port.

Example

In this example:

FILE RECEIVE BINARY “LONGFILE.TXT”
RESETSERIAL

DCS resets the communications port after receiving the binary file from the remote system.

3 C
om

m
ands

443

RESTART

RESTART

The RESTART command causes the execution of a script to branch to the first line of the executing
script.

Arguments

The RESTART command takes no arguments.

Comments

The execution of a RESTART command does not clear any existing resources created during
script execution (variables, tables, etc.).

Example

In this example:

PERFORM set_up
PERFORM get_data
DIALOG
MESSAGE “Repeat Procedure?”
BUTTON “OK” RESTART
BUTTON “NO” CANCEL
DIALOG END

the script is restarted if the OK button is clicked.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

444

RESUME

RESUME

The RESUME command causes script execution to resume at the command following the most re-
cently executed WAIT command.

Arguments

The RESUME command takes no arguments.

Comments

Also see: Event Handling - WAIT and WHEN Commands in Chapter 1 Introduc-
tion

Example

In this example:

DIALOG (20, 40, 200, 60) “LAUNCH”
EDITTEXT (20, 10, 140) “Application: “
EDITTEXT (20, 40, 140) “File Name: “
BUTTON (50,50) “OK” PERFORM launch, RESUME
BUTTON (110, 50) “CANCEL” CANCEL
DIALOG END
WAIT RESUME

after the OK button is pressed the routine labeled *launch is performed. Then, the RE-
SUME command branches execution beyond the WAIT RESUME command.

3 C
om

m
ands

445

RETURN

RETURN

The RETURN command causes script execution to resume at the command following the most recent-
ly executed PERFORM command. The PERFORM and RETURN commands, when used together,
define a subroutine.

Arguments

The RETURN command takes no arguments.

Comments

If DCS executes a RETURN command without having previously executed a PERFORM com-
mand, the RETURN command operates as the CANCEL command.

Example

In this example:

IF ERROR
BEGIN
PERFORM errorRoutine (“No more data”)
CANCEL
END
.
.
.
*errorRoutine ($errorMessage)
DIALOG (20, 20, 100, 60)
MESSAGE $errorMessage
BUTTON “OK” RESUME
DIALOG END
WAIT RESUME
RETURN

a generic error routine is created. Whenever the routine executes, the RETURN command
causes execution to branch back to the line immediately following the PERFORM command
that called the routine.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

446

SAVE

SAVE FileName

The SAVE command saves the active session’s configuration to the session file specified by the optional
file name.

Arguments

FileName

The optional FileName argument is a string specifying the session file in which to save the
configuration information. The FileName argument must specify a valid file name for your
system.

If you do not specify a file extension in the FileName argument, the file is automatically given
the “.ses” file extension.

The FileName argument may also be specified as a question mark (?). DCS will then prompt
you to enter the name of a file in which to save the session during script execution.

If you do not include the FileName argument, DCS saves the configuration to the active ses-
sion file. If no session file is currently active, this command will have no effect.

Comments

The ERROR function returns TRUE if an invalid file name is specified.

Example

In this example:

SAVE “CIS”

the current settings are saved as the session file CIS.SES.

In this example:

SET EMULATION “ANSI”
SET PHONENUMBER “5551234”
SAVE “ANSIUSER”

two settings were modified and saved as session file ANSIUSER.SES.

3 C
om

m
ands

447

SCREEN

SCREEN (x, y, w, h) Display WINDOW WinHandle

The SCREEN command controls the size and display of a session window.

Arguments

(x, y, w, h)

The optional (x, y, w, h) coordinate set specifies the desired position and size of a session
window. It indicates the top left corner (x, y), width (w), and height (h). The coordinates are
specified in logical units; horizontally, there are four logical units per character: vertically, there
are eight logical units per line.

Display

The optional Display argument is specified by one of the following keywords:

Keyword Description

HIDE This keyword hides a session window.

SHOW This keyword displays a session window if it is hidden, and updates the
terminal screen with received data if it is dimmed.

DIM This keyword turns off screen updating.

MAXIMIZE This keyword expands a session window to fill the application window’s
entire client area.

RESTORE This keyword restores a maximized session window to its previous size.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

A hidden session window is fully functional.

If a window handle is not included, the command affects the active session window.

Example

In this example:

SCREEN HIDE
DIAL “5551234”
PERFORM login
LOGTOFILE “INDATA.TXT”
FILE CLOSE
SCREEN SHOW

the session window is hidden while the incoming text is captured.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

448

SCROLL DOWN

SCROLL DOWN Rows

The SCROLL DOWN command scrolls down a specified number of lines in the active session window
history buffer. It is the same as clicking on the down arrow on the vertical scroll bar. It is applicable
only when the vertical scroll bar is displayed (indicating that the entire host screen is not visible in the
session window).

Arguments

Rows

The Rows argument is an integer specifying the number of lines to scroll down through the
history buffer.

Comments

The result of this command is the same as if you had clicked on the down arrow on the verti-
cal scroll bar. If the number of scroll down lines exceeds the lower limit of the history buffer,
scrolling stops at the last row.

This command does not change the position of the cursor in the session window.

3 C
om

m
ands

449

SCROLL LEFT

SCROLL LEFT Columns

The SCROLL LEFT command directs DCS to scroll left in the active session window. It is the same as
clicking on the left arrow on the horizontal scroll bar. It is applicable only when the horizontal scroll
bar is displayed (indicating the entire host screen is not visible in the session window).

Arguments

Columns

The Columns argument is an integer specifying the number of single character positions to
scroll left.

Comments

The result of this command is the same as if you had clicked the left arrow on the horizontal
scroll bar at the bottom of the screen. If the number of columns to scroll exceeds the left mar-
gin limit of the history buffer, scrolling stops at the leftmost column (column zero).

This command does not change the position of the cursor in the session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

450

SCROLL RIGHT

SCROLL RIGHT Columns

The SCROLL RIGHT command directs DCS to scroll right in the active session window. It is the same
as clicking on the right arrow on the horizontal scroll bar. It is applicable only when the horizontal
scroll bar is displayed (indicating the entire host screen is not visible in the session window).

Arguments

Columns

The Columns argument is an integer specifying the number of single character positions to
scroll right.

Comments

The result of this command is the same as if you had clicked the right arrow on the horizontal
scroll bar at the bottom of the screen. If the number of columns to scroll exceeds the rightmost
margin limit of the history buffer, scrolling stops at the rightmost column.

This command does not change the position of the cursor in the session window.

3 C
om

m
ands

451

SCROLL UP

SCROLL UP Rows

The SCROLL UP command directs DCS to scroll up a specified number of lines in the active session
window’s history buffer. It is the same as clicking on the up arrow on the vertical scroll bar. It is ap-
plicable only when the vertical scroll bar is displayed (indicating the entire host screen is not visible in
the session window).

Arguments

Rows

The Rows argument is an integer specifying the number of lines to scroll up through the his-
tory buffer.

Comments

The result of this command is the same as if you clicked the up arrow in the vertical scroll bar.
If the number of lines to scroll up exceeds the upper limit of the history buffer, scrolling stops
at the top row.

This command does not change the position of the cursor in the session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

452

SELECTION

SELECTION StartLine EndLine WINDOW WinHandle

The SELECTION command selects a block of rows in a session window. Although the command
selects the block, the block will not appear highlighted in the window.

Arguments
StartLine

The StartLine argument is a numeric specifying the number of the first row of the desired
block, where the first row in a window is considered row zero.

EndLine

The EndLine argument is a numeric specifying the number of the last row of the desired block.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause selects a block in a particular session window.

Comments

The StartLine and EndLine arguments must not exceed the number of rows for a window.
When you want to make a selection in a session window, the number of rows in an emulation
(for example, the model in a 3270 emulation) determines the number of lines in the session
window and the possible values of the StartLine and EndLine arguments. If both the StartLine
and EndLine arguments are larger than the range allowed for a window, DCS will not make a
selection. DCS does not make a default selection in the window.

The selection block includes all columns of the selected rows.

If you do not include the WINDOW clause in the command, a block in the active session
window is selected.

Example

See the RECORD SCAN command.

3 C
om

m
ands

453

SELECTION APPEND

SELECTION APPEND FileName TABLE WINDOW WinHandle

The SELECTION APPEND command appends the current selection in a session window to the exist-
ing contents of the specified file.

Arguments

FileName

The FileName argument is a string specifying the name of the file in which to save the selec-
tion. The FileName argument must specify a valid file name for your system or a null string
(“”). If a null string is specified, a prompt appears during script execution to enter the name of
a file in which to save the selection.

TABLE

The optional TABLE keyword saves the data in a tabular format. All data separated by two or
more consecutive spaces will be tab delimited.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause appends the selection from a particular session window.

Comments

If the WINDOW clause is not included in the command, the selection is appended from the
active session window.

Example

In this example:

SELECTION BUFFER
SELECTION APPEND “DATAFILE.TXT”

DCS adds the current contents of the history buffer to the end of the file DATAFILE.TXT.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

454

SELECTION BUFFER

SELECTION BUFFER WINDOW WinHandle

The SELECTION BUFFER command selects the entire contents of the session window’s history buffer
as a block of text. As with the SELECTION command, this command makes an invisible selection.
This command is not for emulations with screens composed as pages, such as an IBM TN3270 termi-
nal.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

The entire contents of the history buffer, which includes the portion displayed on the screen,
is selected. If the WINDOW clause is not included in the command, the selection will be made
from the active session window.

Example

See the SELECTION APPEND command.

3 C
om

m
ands

455

SELECTION PRINT

SELECTION PRINT WINDOW WinHandle

The SELECTION PRINT command prints the current selection as established by the SELECTION or
SELECTION BUFFER commands.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to print the selection in a particular session window.

Comments

If you gave the SELECTION command the proper StartLine and EndLine arguments, and if
DCS has not previously executed the SELECTION command on an open window, the SE-
LECTION PRINT command prints a blank page.

If the WINDOW clause is not included in the command, the selection in the active session
window will be printed.

Example

In this example:

SELECTION 0 23 WINDOW WINDOWHND (“SCR1”)
SELECTION PRINT WINDOW WINDOWHND (“SCR1”)

all 24 lines in the session window are sent to the printer. The WINDOWHND function is used
to return the WinHandle for window SCR1.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

456

SELECTION SAVE

SELECTION SAVE FileName TABLE WINDOW WinHandle

The SELECTION SAVE command saves the current selection to the specified file. This command
works only with a selection made with the SELECTION or SELECTION BUFFER commands.

Arguments

FileName

The FileName argument is a string specifying the name of the file in which to save the selec-
tion. The FileName argument must specify a valid file name for your system. If a null string
(“”) is specified, a prompt for a file name appears.

TABLE

The optional TABLE keyword directs DCS to save the data in tabular format. All data sepa-
rated by two or more consecutive spaces will be saved as tab delimited.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to save a selection made in a particular session window.

Comments

If the WINDOW clause is not included in the command, the selection in the current session
window is saved to the file.

If a write error occurs, the Result system variable contains a string describing the error.

Example

In this example:

SELECTION 0 24
SELECTION SAVE “TERMDATA.TXT”

DCS saves the entire contents of the session window to the file TERMDATA.TXT.

3 C
om

m
ands

457

SELECTION SEND

SELECTION SEND WINDOW WinHandle

The SELECTION SEND command sends the selected text to the active DCS session window. This
command works only with a selection made with the SELECTION or SELECTION BUFFER com-
mands.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The optional WINDOW clause directs DCS to send the selection in a particular session window
to the remote system connected to that session.

Comments

If the WINDOW clause is not included in the command, the selection in the current window
will be sent to the remote system.

Example

In this example:

SELECTION 0 0
SELECTION SEND

the first line of data in the window is sent to the remote system.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

458

SEND

SEND (Row, Col) NOCR String NOPROTECT ONEPACKET WAITECHO WINDOW
WinHandle

The SEND command sends text to an open DCS session window.

Arguments

(Row, Col)

These arguments apply only to block mode emulations. The optional (Row, Col) coordinate
set indicates the row and column of where to place the text in a window. The first row in
the window is row 9 (zero), and the first column is column 0 (zero). If coordinates are not
included in the command, text is placed in the window starting at the current cursor position.
These coordinates are especially useful when connecting to remote systems requiring special-
ized or complex interactions.

NOCR

A carriage return is automatically sent following the contents of the String argument. The
optional NOCR keyword directs DCS not to append a carriage return to the String argument.

Note: For IBM TN3270 emulations, the SEND command automatically appends
{NEWLN} to the end of a line in place of a carriage return. Use NOCR to
remove the {NEWLN}.

String

The String argument contains the text to send to a window.

Also see: Rules for Sending Special Strings at the end of this command description.

NOPROTECT

The optional NOPROTECT keyword ignores protected areas of the screen and inserts text to
the screen buffer. This does ot requires the host to read back the modified protected fields. This
string should only be used in special situations.

Note: This string is applicable only for IBM 3270/5250 emulations.

ONEPACKET

The optional ONEPACKET keyword requires DCS to send the contents of the String argu-
ment as a single network packet.

Note: For IBM TN3270 emulations, the optional ONEPACKET keyword does not
apply.

3 C
om

m
ands

459

WAITECHO

The optional WAITECHO keyword sends the string argument one character at a time, waiting
until the remote system echoes back each character before sending the next character in the
string. This process continues until all characters in the String argument are sent.

Note: For IBM TN3270 emulations, the optional WAITECHO keyword does not ap-
ply.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause sends the string to the window of a particular remote system.

Comments

You must transmit a null character as follows:

Send NoCR “^@”

This script example transmits a null character without a carriage return. The string ^@ repre-
sents a null character.

If a null character is embedded in a string, the null character is sent with the other characters
in the string. For example, consider the following sequence of script commands:

$String = “abcd^@efgh”
Send $String

The SEND command sends the text to the active window, just as though you had typed the
text string from the keyboard. The SEND command transmits 1) the letters a, b, c, and d, 2)
then, the null character, and 3) then, the letters e, f, g, and h.

If the WINDOW clause is not included, the text is sent to the active session window.

SEND, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

460

Example

In this example:

SEND CHR (27) | CHR (43)

the first CHR function returns the escape character, and the second CHR function returns the
plus character. The Escape and Plus characters are concatenated (joined) together into a string
with the concatenation operator (the vertical bar or pipe symbol). The SEND command then
sends the string, followed by a carriage return character, to a remote system.

In this example:

SEND “{insertoff}18934

the {insertoff} metakey ensures that the input mode is Overtype before sending the character
string. After sending the character string, the input mode returns to its previous setting.

In this example:

DIAL “5551234”
SEND NOCR “^C”
WAIT STRING “Enter password: “
SEND “secretcode”

the specified phone number is dialed, a [Ctrl]+[C] without a carriage return is sent, and then
the script waits for the string “Enter password:” to appear in the session window.
When the string appears, the string “secretcode” followed by a carriage return is sent.

In this example:

CONNECT
SEND NOCR “{ENTER}{WAITXC}{ENTER}”
WAIT STRING “Enter password: “
SEND NOCR “secretcode {ENTER}”

a connection to a remote IBM 3270 system is made, an {ENTER} key is sent, and the script
waits for the XClock to disappear at which occurrence another {ENTER} key is sent.

The string {WAITXC} is a special string in DCS. {WAITXC} in a string indicates transmission
with a remote system. DCS waits for the remote system to become ready again before sending
the remaining characters. Note that NOCR suppresses the automatic {NEWLN} normally ap-
pended to any line transmitted with the SEND command.

After the SEND command, the script waits for the string “Enter password: “ to appear
in the currently active session window. When it appears, the string “secretcode” is sent,
followed by an {ENTER} key.

SEND, continued

3 C
om

m
ands

461

In this example:

CONNECT “SCR1” %hwnd
SEND NOCR (20,10) “userid{ENTER}” WINDOW %hwnd
WAIT STRING “Enter Password: “
SEND NOCR “password{ENTER}” WINDOW %hwnd

A connection to host session SCR1 is made. The user’s ID is sent to the host starting from at
20, column 10. After the remote system prompts for a password, DCS sends the password
with a carriage return starting from the current cursor position.

When referencing a row or column, a variable or constant must be used, i.e., an expression
cannot be used. For example:

%row=1
SEND (1,%col)
SEND (1,%col+1)
SEND (1,(%col+1))

is not supported. The example above could be re-written as:

%row=1
SEND (1,%row);column 1 row 1
%row=%row+1 or INCREMENT %row
SEND (1,%row);column 1 row 2
%row=%row+1 or INCREMENT %row
SEND (1,%row);column 1 row 3
%row=%row+1 or INCREMENT %row

In this example:

SEND NOCR $UserID | “{TAB}” | $Password | \ “{ENTER}
{WAITXC}PROFS{ENTER}”

DCS sends a user’s ID, a [TAB] character, a user’s password, an [ENTER] character, and then
waits for the remote system to process that information before sending the PROFS command
and an [ENTER] character to the remote system.

In this example:

SEND (2,12) NOCR "text" NOPROTECT

A text string is inserted in the screen buffer at position 2,12, even if this is a protected area.

SEND, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

462

Rules for Sending Special Strings

Use special strings enclosed in braces { } or preceded by a caret (^) symbol to send specific keys
or perform actions. The following table summarizes the available special strings or actions:

Key or Action String

{ “{{“

^ “^^

launch a script ‘^$Escript.dct ’ or

 {^$Escript.dct} or

 ‘^$Pscript.dct ‘ or

 {^$Pscript.dct} or

launch an application ‘^$Xapplication.exe parameters ‘ or

 {^$Xapplication.exe parameters}

set the result string ‘^$Rresult string ‘ or

 {^$Rresult string}

 Setting the result string via a SEND command affects the result
string only for that script. It does not affect any other script.

specific key “{key label}

 To obtain the key label for a specific key, open the Session Prop-
erties dialog. Select an emulation and then select the Keyboard
tab. Click the Edit button and then select the Terminal tab in the
mapping options area. Any string listed in the Terminal tab may
be enclosed within braces { } and sent as a meta key.

 The key label you enclose in braces is not case sensitive, but
internal spaces must be preserved.

turn off Insert mode “{insertoff}character string

wait for host ready state Use the special string {WAITXC}

 DCS waits for the remote system to become ready again before it
sends the remainder of the characters.

Note: Applies only to Block Modes for IBM TN3270 and
Tandem 6530 emulations.

SEND, continued

3 C
om

m
ands

463

SENDBREAK

SENDBREAK DelayUnits

The SENDBREAK command sends the break signal for a specified number of milliseconds.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

DelayUnits

The DelayUnits argument is a numeric specifying the length the break is to be sent, where one
delay unit equals one millisecond.

Example

In this example:

SEND “password”
SENDBREAK 30

a 30 millisecond break is sent to the remote system after sending the password.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

464

SET

SET Variable Source

The SET command assigns the value of the Source argument to the specified variable.

Arguments

Variable

The Variable argument specifies the name and type of the variable (either a string variable,
numeric variable, or Boolean variable) to be assigned.

Source

The Source argument specifies the expression whose contents are assigned to the variable. The
Source argument must be of the same type (string, numeric, or Boolean) as the specified vari-
able.

Comments

The SET command is equivalent to the assignment (=) operator.

Example

In this example:

SET $name “Arnold Wilson”

the string variable $name is assigned the string Arnold Wilson.

These two examples:

SET %yearprofits (%income - %expenses) * 12

%yearprofits = (%income - %expenses) * 12

are equivalent. The numeric variable %yearprofits is assigned the value of the complex
numeric (%income - %expenses) multiplied by 12.

3 C
om

m
ands

465

SET APPTITLE

SET APPTITLE Name

The SET APPTITLE command sets the title caption bar of the application window.

Note: For scripts that produce multiple session windows in a single execution of the DCS
application rather than multiple application windows, use the SET WINDOWTITLE
command. Otherwise, the session window title is lost when session windows are re-sized.

Arguments

Name

The Name argument is a string specifying the text to display in the title bar of the application
window.

Comments

Unlike the TITLE command, which is a compiler directive and requires a literal string (char-
acters within quotation marks, not a string variable), the SET APPTITLE command is a true
script command and can accept a string expression of any format.

As with the TITLE command, the effects of the SET APPTITLE command end when the script
terminates. When the script ends, the title of the application window reverts to the default.

Example

In this example:

SET APPTITLE “Mail System for “ | $username

the SET APPTITLE command overrides the default title and displays the character sequence
“Mail System Acme Corporation” in the application window title bar. (The default title of the
application window is DCS.)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

466

SET ATTRIBUTES

SET ATTRIBUTES FileName Attributes

The SET ATTRIBUTES command modifies the file attributes of the specified file.

Arguments

FileName

The FileName argument is a string specifying the name of the file. The FileName argument
must specify a valid file name for your system.

Attributes

The Attributes argument is a numeric specifying the file attributes as shown on the table below.
You may specify the Attributes argument as a sum of the values of the attributes listed below.
Specifying an Attributes argument of 0 (zero) removes all attributes from the file.

Value File Attribute

1 Read-only File

2 Hidden File

4 System File

16 Subdirectory

32 Archived File

64 Compressed File

Example

In this example:

IF ATTRIBUTES ($file) = 3
SET ATTRIBUTES $file 6

In this example, if the attributes of $file are read-only and hidden (the sum of their values is
3 (three)), DCS sets the attributes to Hidden and System (the sum of their values is 6 (six)).

3 C
om

m
ands

467

SET AUTOSCROLLTOCURSOR

SET AUTOSCROLLTOCURSOR Boolean

The SET AUTOSCROLLTOCURSOR command determines whether to scroll the session window
to the emulation cursor position each time the cursor moves outside of the visible part of the session
window.

Arguments

Boolean

The Boolean argument is a Boolean value specifying whether or not the Autoscroll option is
enabled. If the Boolean argument evaluates to TRUE, scrolling occurs automatically when the
emulation cursor is moved outside the visible part of the session window. If the Boolean argu-
ment evaluates to FALSE, automatic scrolling of the session window is turned off.

Comments

Vertical or horizontal scrolling is applicable only when the appropriate scroll bars are visible in
the session window.

This command has the same effect as checking or unchecking the Autoscroll to Cursor option
on the Cursor subtab of the Displays tab of the Session Properties dialog.

Auto Scroll to
Cursor option

Figure 3.1
Cursor sub-tab of
the Displays tab in
the Session Proper-
ties dialog

Where possible use the DISPLAYCONFIG command instead of this command.

Example

SET AUTOSCROLLTOCURSOR TRUE

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

468

SET AUTOSIZE

SET AUTOSIZE Boolean

The SET AUTOSIZE command has the same effect as checking or unchecking the Autosize Font to
fit session window check box on the Displays tab of the Session Properties dialog.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is a Boolean expression. If the expression evaluates to TRUE, Autosize
Font is enabled. If the expression evaluates to FALSE, Autosize Font is disabled.

Comments

Where possible use the DISPLAYCONFIG command instead of this command.

Autosize font to fit
session window

Figure 3.2
Font sub-tab of the
Displays tab in the
Session Properties
dialog

3 C
om

m
ands

469

SET BACKSPACEDESTRUCTIVE

SET BACKSPACEDESTRUCTIVE Boolean

The SET BACKSPACEDESCTRUCTIVE command causes the [BACKSPACE] key to erase, or delete,
characters as the cursor moves from right to left.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is a Boolean expression. If the expression evaluates to TRUE, the
[BACKSPACE] key erases, or deletes, characters as the cursor moves from right to left. If the
expression evaluates to FALSE, the cursor moves over characters without deleting them when
the [BACKSPACE] key is pressed.

Example

In this example:

If #HostSupportsDestructBack
SET BackSpaceDestructive OFF

DCS checks to see if the remote system supports destructive backspaces (by checking to see if
the Boolean variable #HostSupPortsDestructBack evaluates to TRUE). If the remote
system does support a destructive backspace, DCS uses the Boolean value OFF (FALSE) to set
the [BACKSPACE] key to a non-destructive mode, allowing the [BACKSPACE] key to move
the cursor backward over characters without deleting them.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

470

SET BACKSPACEKEY

SET BACKSPACEKEY Keyword

The SET BACKSPACEKEY command determines whether the cursor moves from right to left sent
when the backspace key is pressed, or instead deletes the character at the current cursor location.

Note: This command does not apply to IBM TN3270 emulations.

Arguments
Keyword

The Keyword argument is specified by one of the following keywords:

Keyword Action

BACKSPACE Directs DCS to send a backspace character when the backspace key is
pressed.

DELETE Directs DCS to send a delete character when the backspace key is pressed.

Example

In this example:

LOAD “MAILSET”
SET BACKSPACEKEY DELETE
PERFORM gather_data
SET BACKSPACEKEY BACKSPACE

the character sent by pressing the [BACKSPACE] key is changed to a delete character only
while the gather_data routine is performed.

3 C
om

m
ands

471

SET BAUDRATE

SET BAUDRATE Rate

The SET BAUDRATE command changes the baud rate of the selected communications port.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Rate

The Rate argument is a numeric specifying the desired baud rate.

The following baud rates are available :
110

300

600

1200

2400

4800

9600

14400

19200

28800

38400

57600

115200

Example

In this example:

SET BAUDRATE 19200
DIAL “5551234”

the baud rate is set to 19200 before dialing the phone number.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

472

SET BINARYTRANSFERPARAMS

SET BINARYTRANSFERPARAMS OptionKeyWord ActionKeyWord OptionKeyWord
ActionKeyWord…

The SET BINARYTRANSFERPARAMS command sets the parameters for the active session’s binary
file transfer protocol.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

OptionKeyWord ActionKeyWord

The OptionKeyWord and ActionKeyWord arguments form a clause. OptionKeyWord relates to
the name of a parameter in a settings dialog for a binary transfer protocol. The ActionKeyWord
defines the setting for a parameter indicated by the OptionKeyWord.

Note: Though all of the following keywords are optional, the SET BINARYTRANS-
FERPARAMS command requires at least one or more of the following keyword
clauses (in any order):

Keyword Action

ZAUTOSTART ZmodemAutoStart When DCS is applying the ZModem protocol, the
optional ZAUTOSTART clause indicates whether to
transfer a file when DCS receives a ZModem down-
load auto-start sequence from the remote system.
The ZmodemAutostart argument should evaluate to a
Boolean expression or keyword. The Boolean keywords
ON, YES, and TRUE evaluate to a true Boolean value.
If ZmodemAutostart evaluates to TRUE, DCS trans-
fers a file automatically when it receives a ZModem
download auto-start sequence. The Boolean keywords
OFF, NO, and FALSE evaluate to a false Boolean
value. If ZmodemAutostart evaluates to FALSE, DCS
will transfer a file only when you activate the Send File
option in the Session menu or a script contains a FILE
SEND BINARY command. This keyword clause has the
opposite effect of the Disable AutoStart check box in the
ZModem dialog (found in the File Transfers tab of the
Session Properties dialog).

ZERRORCHECK ZmodemErrorCheck The optional ZERRORCHECK clause sets the error
checking method for ZModem transfers. The Zmode-
mErrorCheck argument should be one of the following
keywords: CRC32, or CRC16. This keyword clause has
the same effect as selecting a radio button in the Error
Checking group box of the ZModem Settings dialog box.

ZEXISTING ZmodemFileExists The optional ZEXISTING clause tells DCS how to
handle a file on a receiving system, when the file name
of a file on the receiving system matches that of the file
DCS is transferring. The ZmodemFileExists argument
should be one of the following keywords: RESUME,
PROMPT, OVERWRITE, SKIP. This keyword clause has
the same effect as selecting a radio button in the If File
Exists group box of the ZModem Settings dialog box.

3 C
om

m
ands

473

ZTIMING ZmodemTiming The optional ZTIMING clause sets the time-out options
for ZModem transfers. The ZmodemTiming argument
should be one of the following keywords: STANDARD,
or LOOSE. This keyword clause has the same effect as
selecting a radio button in the Timing Constraints group
box of the ZModem Settings dialog box.

Comments

Wherever possible, use the XFERCONFIG command instead of this command.

Example

This example:

SET BINARYTRANSFERPARAMS ZEXISTING OVERWRITE

overwrites a file that already exists on a receiving system, when transferring files via ZModem.

KEYWORD ACTION

SET BINARYTRANSFERPARAMS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

474

SET BINARYTRANSFERS

SET BINARYTRANSFERS Protocol WINDOW WinHandle

The SET BINARYTRANSFERS command sets the binary file transfer protocol or host environment
for a session.

Arguments

Protocol

The Protocol argument is a keyword specifying the binary transfer protocol.

The Protocol argument is specified by one of the following keywords:
IND$File

IXF

XMODEM

YMODEM

ZMODEM

KERMIT

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

If the WinHandle argument is not included, the transfer protocol is applied to the active ses-
sion window.

To configure the parameters for the specified file transfer protocol, use the XFERCONFIG
command.

Example

In this example:

SET BINARYTRANSFERS ZMODEM
FILE SEND BINARY “SESCRIPT.DCT”

ZModem is established as the file transfer protocol before performing a file transfer.

3 C
om

m
ands

475

SET BUFFERLINES

SET BUFFERLINES Lines

The SET BUFFERLINES command specifies the total number of 80-column lines to be reserved for
the session window and history buffer. It only applies to emulations that are not in block mode.

Arguments

Lines

The Lines argument is an integer specifying the number of lines to reserve. DCS always
displays at least 25 lines in the session window. If a number less than 25 is specified, a default
value of 25 is used.

Comments

The default history buffer size is 100 lines.

If there is not enough memory to allocate a buffer of the desired size, DCS includes as many
lines as possible by allocating available memory to the buffer. You may increase the buffer size
to a maximum of 9,999 lines.

This command has the same effect as selecting the number of history buffer lines in the His-
tory tab in the Displays section of the Session Properties dialog.

Wherever possible, use the DISPLAYCONFIG command instead of this command.

Example

In this example:

SET BUFFERLINES 200

a history buffer consisting of 200 lines is established.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

476

SET CARRIERDETECT

SET CARRIERDETECT Boolean

The SET CARRIERDETECT command sets the carrier detect flag.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

If the Boolean evaluates to TRUE, DCS uses the modem’s carrier status to determine if the
carrier is present. If the Boolean evaluates to FALSE, DCS logically determines if the carrier is
present.

Comments

DCS will automatically detect carrier loss only if the carrier detect flag is TRUE. If the carrier
is lost and the carrier detect flag is FALSE, DCS must hang up before dialing again.

Example

In this example:

SET MODEM HAYES
SET CARRIERDETECT TRUE
DIAL “5551234”

DCS establishes the modem type and the carrier detect flag before attempting to dial.

3 C
om

m
ands

477

SET COLUMNS

SET COLUMNS Integer

The SET COLUMNS command specifies the number of columns in the session window, where there is
one character per column.

Arguments

Integer

The Integer argument must be a valid column width value for the emulation. The value is typi-
cally the integer 80 or 132.

Comments

This command applies to all emulations that support variable column width.

Example

In this example:

SET COLUMNS 132
PERFORM display_data
SET COLUMNS 80

DCS switches to 132-column mode while the display_data routine is performed. The
standard 80-column mode is then restored.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

478

SET CONNECTION

SET CONNECTION Connector Command WINDOW WinHandle

This command allows you to specify which type of communications connector DCS uses when it
connects to a remote system. This command can also load a DLL created by a third party. For further
information about third party DLLs and about creating a communications connector for DCS, con-
tact FutureSoft.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Connector

The Connector argument is a string specifying the name of the communications connector.
The argument can also specify a DLL containing a valid DCS connector. Connector DLLs for
DCS are located in the Conn directory by default. Valid strings are shown in the following
table:

Connector String

Direct Serial COMDIR

Modem COMTAPI or TAPI

Meridian LAT32 MERDNLAT

Telnet WINSOCK or TELNET

Microsoft SNA Server* FMIDLL*

* available only in appropriate Client Option package

Command

The optional Command argument is a string specifying any optional commands that should
be passed to the communications connector during its initialization. These commands are
specific to the communications connector and its DLL.

Each command string consists of a phrase or a number of phrases separated by a unique sepa-
rator character:

CommandPhrase Separator CommandPhrase Separator...

In the command string description, Separator is a single character, which is not alphanumer-
ic, and does not appear in any CommandPhrase specified for a connector. For example, the
address of a node on a TELNET network commonly includes numbers with periods to sepa-
rate parts of the address. The address could be a CommandPhrase, but since a period is part
of the address, you must use a character other than a period (possibly a semicolon) to separate
each CommandPhrase from other CommandPhrases in the command string. A Separa-
tor must follow each CommandPhrase. If you omit a phrase, DCS uses a default value for
that setting, but the Separator for that CommandPhrase must still appear in the command
string. For example, if a connector needed three CommandPhrases, but you want to use a

3 C
om

m
ands

479

default or previous setting for the second CommandPhrase, the Command argument might
appear as follows:

 In this example:

 “CommandPhrase1;;ComandPhrase3;”

 a semicolon is the Separator.

The command string, like all strings in DCS may have a maximum of 254 characters. If you
exceed this limit, the results are unpredictable.

Below is a list of valid command phrases and keywords.

CommandPhrase Action

COM n The COM clause directs DCS to use a serial
communications port as the communications
connector. The n argument is an integer
which specifies a communications port. The
value of n may be 1, 2, 3, 4, 5, 6, 7, 8, or 9. If
the port is not valid for your computer, DCS
displays the message “COM Port n Not Avail-
able” in a dialog box.

WINSOCK “HostAddr Separator Port Separator” The HostAddr argument indicates either a
host name located in your Hosts file or the In-
ternet protocol address of the remote system.

 The Port argument is an integer specifying
the TCP/IP port to which you wish to connect.
Unless you are connecting to a specialized
device, the port should be set to 23.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

If a window handle is not specified, the command affects the active session window.

Comments

Wherever possible use the CONNCONFIG command (rather than the optional Command
argument) to configure the connector you specify with this command.

Example

In this example:

SET CONNECTION “WINSOCK” “MYHOST;23;”

the connector is set to WINSOCK and connects to the remote system named “MYHOST” us-
ing port 23.

SET CONNECTION, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

480

SET CONNECTMESSAGE

SET CONNECTMESSAGE Text

The SET CONNECTMESSAGE command changes the characters in the message contained in the
ConnectMessage system variable.

Note: This command does not apply to IBM TN3270 emulations.

Arguments
Text

The Text argument is the string displayed when a connection is made to a remote system.

Comments

Compare with the CONNECTMESSAGE function.

Example

In this example:

$NewMessage = “SUCCESS”
SET ConnectMessage $NewMessage

DCS places the text Success in the $NewMessage string variable. The string variable be-
comes the argument for the SET CONNECTMESSAGE command.

3 C
om

m
ands

481

SET CONNECTRESULT

SET CONNECTRESULT Num

The SET CONNECTRESULT command changes the value of the ConnectResult system variable.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Num

The Num argument is an integer which the command places into the ConnectResult system
variable. The integer, which must be one of the values listed in the table below, corresponds to
a specific modem state.

Value Modem State

0 Success

3 No Carrier

4 Modem Error

6 No Dial Tone

7 Busy

8 No Answer

99 User-defined Error

Example

In this example:

Dial
SWITCH ConnectResult ()
Case 6:
SET ConnectResult 99
PERFORM “EndScript”
Case 7:
PERFORM “CallAgain”
LEAVE
Switch End

DCS checks the ConnectResult system variable after dialing. If the value of the variable is six
(no dial tone), DCS resets ConnectResult to a user-defined error and ends the script; however,
if the value of the variable is seven (the line was busy), DCS calls the number again.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

482

SET CURSOR

SET CURSOR Display

The SET CURSOR command sets the shape and state of the cursor in a session window.

Arguments

Display

The Display argument is specified by one of the following keywords:

Keyword Action

ON Turns on the cursor display

OFF Turns off the cursor display

BLOCK Sets the cursor shape to a block

UNDERLINE Sets the cursor shape to an underscore character

Comments

If the cursor is set to OFF, setting the shape to BLOCK or UNDERLINE changes the cursor
character, but does not turn the display to ON. This must be done with a separate SET CUR-
SOR ON command.

Wherever possible use the DISPLAYCONFIG command instead of this command.

Example

In this example:

SET CURSOR BLOCK

DCS changes the shape of the cursor to a block.

3 C
om

m
ands

483

SET DATABITS

SET DATABITS Integer

The SET DATABITS command sets the number of data bits DCS uses during serial transmission.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Integer

The Integer argument specifies the desired number of data bits. The Integer argument may be
one of the following values:

4 5 6 7 8

Example

In this example:

SET DATABITS 7
;connect to a remote system
SET PARITY EVEN
;configure the remote system
SET BINARYTRANSFERS KERMIT
;to receive a file via the kermit transfer protocol
FILE SEND BINARY “UTILITY.DCT”

communications settings are established before sending the file UTILITY.DCT.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

484

SET DDETIMEOUT

SET DDETIMEOUT Seconds

The SET DDETIMEOUT command sets the timeout period for the following DDE commands: In-
struct, Request, Table Reply, Poke, Table Poke

Arguments

Seconds

The optional Seconds argument is an integer identifying the time period to wait for the
above commands to complete. The default value is 20 seconds.

Comments

The ERROR function is set to TRUE if the DDE command times out.

3 C
om

m
ands

485

SET DECIMAL

SET DECIMAL Numeric

The SET DECIMAL command specifies the number of places for string representations of real numer-
ics.

Arguments

Numeric

The Numeric argument specifies the desired number of decimal places.

Comments

This command does not affect the internal precision of the real numerics, only the format.

Use the DECIMAL command in conjunction with the STR function.

Example

In this example:

SET DECIMAL 2
DISPLAY STR (1000*.0875)

the string 87.50 is displayed in the session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

486

SET DEFAULTSESSIONHANDLE

SET DEFAULTSESSIONHANDLE WinHandle

The SET DEFAULTSESSIONHANDLE command assigns an integer to the DefaultSessionHandle
system variable.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying the window handle of the default
session window.

Comments

In many cases, the default session window is the active session window. With multiple sessions,
however, you may wish to specify a default session window as the target of those commands
which do not target a specific session window (rather than having those commands target the
active session window).

Example

In this example:

%SessHandle = WINDOWHND (“VT220”)
SET DEFAULTSESSIONHANDLE %SessHandle

the default session window handle for this script is set to the handle of the window whose title
is VT220. In this example, VT220 may or may not be the currently active session. Regardless,
it is now the default session for any command which does not target a specific session window.

3 C
om

m
ands

487

SET DIRECTORY

SET DIRECTORY Type CREATE Path

The SET DIRECTORY command specifies where to maintain the file directory for the specified file
type.

Arguments

Type

The Type argument specifies the file type. It is specified by one of the following keywords:
DNLOAD MAPS MEMO SETTINGS SCRIPT TASK UPLOAD

CREATE

The optional CREATE keyword directs DCS to create the specified directory if it does not
exist.

Path

The Path argument is a string specifying the path in which to maintain the indicated type of
directory. The Path argument must specify a valid directory for your system.

Comments

If the CREATE keyword is not included, the ERROR function returns TRUE if the specified
directory does not exist. If the CREATE keyword is included, the ERROR function returns
TRUE if the specified directory cannot be created or if it already exists. If the directory already
exists or if the subdirectories leading to the directory do not exist, the ERROR function
returns TRUE.

You can use the SET DIRECTORY command to create a directory that doesn’t exist by includ-
ing the CREATE keyword. This allows you to create a directory and make it the default direc-
tory with a single command.

Example

In this example:

SET DIRECTORY TASK CREATE “C:\DCSERIES\TASK”

DCS is directed to maintain all executable scripts in the DCSERIES\TASK directory on
drive C:. If this directory does not exist, DCS creates it.

In this example:

$TASKDIR = “C:\DCSERIES\TASK”
CREATE DIRECTORY $TASKDIR
SET DIRECTORY TASK $TASKDIR

creates the directory C:\DCSERIES\TASK and then sets the directory as the default storage
location for script task files.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

488

SET EMULATION

SET EMULATION Emulation WINDOW WinHandle

The SET EMULATION command selects a terminal emulation.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Emulation

The Emulation argument is a string specifying the name of the emulation. The argument can
also specify a DLL containing a valid DCS emulation. Emulation DLLs for DCS are located
in the Emul directory by default. The emulations found in this directory include those which
are installed. Valid strings for the Emulation argument are shown in the following table:

Base Product Emulations

Emulation String

ADDS Viewpoint/60 ADDSVP60

ANSI/TTY* ANSI

AT&T 605/705* ATT605

VT Series* VT420

Televideo* TV950

Wyse 50/60 WYSE

Client Option Emulations

Emulation String

AT&T 4425 ATT4425

HP 70092/94 HP70094

Tandem 6530 Tandem

TN3270 IBM3270

TN3287 (print session)* IBM3287

TN5250 IBM5250

* Use the EMULCONFIG command to specify exact model.

The emulation is loaded with default settings; none of the settings in the previous emulation
are transferred to the new emulation.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

 If a window handle is not specified, the command affects the active session window.

3 C
om

m
ands

489

Comments

If the session whose emulation type you wish to set was loaded via script, a default session
handle must be specified before using the SET EMULATION command, or the session’s win-
dow handle must be specified.

Example

In this example:

SET EMULATION “VT420”

the DEC VT420 emulation is loaded for the current session.

In this example:

LOAD
SET DEFAULTSESSIONHANDLE (ACTIVE())
SET EMULATION “VT420”
EMULCONFIG “MODEL=vt220”

the script loads a new session. The SET DEFAULTSESSIONHANDLE specifies which ses-
sion will be the target of the SET EMULATION command. The ACTIVE() function is used
to obtain the window handle of the new session. The emulation is set to VT Series, and the
EMULCONFIG command is used to specify the VT220 model type.

SET EMULATION, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

490

SET FKEYSSHOW

SET FKEYSSHOW Boolean

The SET FKEYSSHOW command automatically displays the session toolbar buttons when you load a
session properties file.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

Comments

By default, any emulation which supports the use of session function keys will automatically
display the keys (F1 through F8) at the bottom of the session window.

If the Boolean evaluates to TRUE, DCS automatically displays the session toolbar buttons.

Example

In this example:

set fkeysshow off
load “session.ses”

when the session file is loaded, the session function keys are not automatically displayed.

3 C
om

m
ands

491

SET FLOWCONTROL

SET FLOWCONTROL Type

The SET FLOWCONTROL command specifies the desired flow control method.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Type

The Type argument is specified by one of the following keywords:
HARDWARE XONXOFF NONE

Comments

HARDWARE flow control is equivalent to the RTS/CTS flow control.

Example

In this example:

SET FLOWCONTROL XONXOFF
PERFORM send_data

the flow control is set to XON/XOFF before performing the routine send_data.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

492

SET KEEPPRINTCHANNELOPEN

SET KEEPPRINTCHANNELOPEN KBoolean

The SET KEEPPRINTCHANNELOPEN command specifies whether DCS will relinquish the Win-
dows print channel when the remote system closes an active print job.

Arguments

KBoolean

The KBoolean argument is a Boolean expression or keyword. The Boolean keywords ON,
YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE evaluate to
FALSE.

If the Boolean evaluates to TRUE, DCS keeps the Windows print channel open even after the
remote system has closed its active print job. If the Boolean evaluates to FALSE, DCS relin-
quishes the Windows print channel whenever the remote system closes its print job.

Comments

The Windows printer is a shared resource. Usually, Windows applications open the printer
resource, use it, and then relinquish it to Windows. Between the closing and opening of the
printer resource, Windows issues a form feed to clear out any residual printing from the previ-
ous print job.

When a remote system sends printer commands to DCS, it may repeatedly open and close the
print channel. In this case, if DCS were to open and close the Windows printer resource every
time the remote system opened or closed the print channel, you would waste paper.

The SET KEEPPRINTCHANNELOPEN command makes it possible for separate printing
requests from a remote system to appear as one printing request to Windows. However, if you
have more than one session window, and if the remote system in each session is printing, DCS
considers the print requests from each session as separate Windows printing tasks; therefore,
you can keep the printing channel open or closed on a session per session basis: keep all open,
keep all closed, or keep some open and others closed.

Example

This example:

SET EMULATION “VT420.DLL”
EMULCONFIG “MODE=VT220”
SET KEEPPRINTCHANNELOPEN ON
WHEN STRING 1 “Starting Print” DISPLAY “^[[5i”
WHEN STRING 2 “Stopping Print” DISPLAY “^[[4i”
WHEN STRING 3 “Closing Print” PRINT CLOSE
WAIT RESUME

loads the DEC VT-220 emulation and opens the print channel. The script then sets up three
WHEN STRING commands to watch for incoming data from the remote system.

When the data enters the session window, the command block of the WHEN STRING com-
mands sends printing control commands to the emulation and to DCS.

3 C
om

m
ands

493

When DCS receives the string Starting Print from the remote system, the script sends
the string ^[[5i (hexadecimal, 1B 5B 35 69) to the session window and to the emulation.
This character sequence is the VT-220 escape sequence which requires the emulation to send
data it is receiving from the remote system to a printer.

When DCS receives the string Stopping Print, the script sends the string ^[[4i (hexa-
decimal, 1B 5B 34 69) to the session window and to the emulation. This VT-220 escape
sequence stops the emulation from sending data to the printer.

When DCS receives the string Closing Print, the script closes the Windows printer
resource.

SET KEEPPRINTCHANNELOPEN, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

494

SET LOCALECHO

SET LOCALECHO Boolean

The SET LOCALECHO command controls the display of local keystrokes.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

If the Boolean evaluates to TRUE, DCS displays keystrokes in the local session window as well
as sending them to the remote system. If the Boolean evaluates to FALSE, DCS sends key-
strokes to the remote system only.

Comments

The effect of this command depends on the terminal emulation you have selected for a session.
If the emulation allows you to turn on and off local echo, this command will affect that set-
ting.

Example

In this example:

DIAL $number
IF CONNECT ()
SET LOCALECHO TRUE

local echo is turned on if a connection is made.

3 C
om

m
ands

495

SET NETID

SET NETID Text

The SET NETID command changes the contents of the NetID system variable.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Text

The Text argument is the string the SET NETID command places into the NetID system vari-
able. The strings “Tymnet” or “Telenet” are examples of a network ID.

Comments

Compare with the NETID function.

Example

This script segment:

Set NetID “NetWorld”
PERFORM “Call”
.
.
.
PERFORM “Hangup”
SET NETID “NetUS”
PERFORM “Call”
.
.
.

changes the NetID system variable before it connects to remote system. Changing the NetID
system variable allows the Call subroutine to access sections of a network with the same
script commands.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

496

SET OUTGOINGCR

SET OUTGOINGCR Option

The SET OUTGOINGCR command specifies whether line feed characters should be added to outgo-
ing carriage returns.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Option

The Option argument is specified by either of the following keywords:

Keyword Action

CRLF Directs DCS to add line feeds to all outgoing carriage returns.

CR Directs DCS not to add line feeds to outgoing carriage returns.

3 C
om

m
ands

497

SET PARITY

SET PARITY Type

The SET PARITY command sets the desired parity type.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Type

The Type argument designates the type of parity to be used. It is specified by one of the follow-
ing keywords:

Keyword Action

EVEN Directs DCS to set the parity bit to make the overall parity of the character
packet even.

ODD Directs DCS to set the parity bit to make the overall parity of the character
packet odd.

MARK Directs DCS to set the parity bit to one.

SPACE Directs DCS to set the parity bit to zero.

NONE Directs DCS to expect all of the databits to be used for data transmission,
with no bit used for parity.

Comments

If you choose a binary transfer protocol requiring eight data bits, and the parity is not set
to NONE, DCS automatically adjusts this setting during the transfer without permanently
modifying it.

Example

This command:

SET PARITY EVEN

sets the parity option to even.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

498

SET PASSTHROUGH

SET PASSTHROUGH State

The SET PASSTHROUGH command determines whether DCS sends data directly to the printer
driver.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

State

The State argument must be one of the following strings: AUTO, 1 (true), 0 (false). A string
expression may also be used.

Note: The State argument, which is a string, must be enclosed in quotes.

String Action

TRUE If TRUE, DCS sends the print jobs to the printer driver in passthrough mode,
if the printer driver supports this mode. The strings YES or ON may also be
used.

FALSE If FALSE, DCS will send print jobs to the current Windows printer driver,
which formats the file for a type of printer and then sends the file to the
printer selected in the Printer Setup dialog or in the PRINT OPEN com-
mand. The strings NO or OFF may also be used.

AUTO If AUTO, the passthrough mode will be determined as needed.

Comments

Not all printer drivers are capable of passthrough printing.

Example

In this example:

SET PASSTHROUGH “TRUE”
PRINT FILE “PSCRIPT.TXT”

PSCRIPT.TXT contains PostScript code which is sent directly to the printer, rather than to
the Windows printer driver.

3 C
om

m
ands

499

SET PASSWORD

SET PASSWORD Text

The SET PASSWORD command changes the characters of the Password system variable.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Text

The Text argument is the string which the SET PASSWORD command places into the Pass-
word system variable.

Comments

This command and its system variable are similar in nature to the SET NETID and the NetID
variable. Compare with the PASSWORD function.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

500

SET PHONENUMBER PhoneNumber

The SET PHONENUMBER command sets the phone number for the CONNECT command when the
session uses a phone line.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

PhoneNumber

The PhoneNumber argument is a string specifying the phone number. DCS ignores any
parentheses, dashes, or spaces in the string. However, DCS pauses for one second for each
comma in the string.

Comments

The phone number specified must be in a format acceptable to your modem. The SET PHO-
NENUMBER command only has an effect when you have configured a session which uses the
Direct Serial connector; it cannot be used with the Modem connector.

Examples

In this example:

LOAD “COMPUSER”
SET PHONENUMBER @S1
DIAL

the session file COMPUSER is loaded and then a phone number is dialed. The phone number
is determined by the contents of the settings variable @S1.

In this example:

SET PHONENUMBER ‘0-312-555-1222,,,,,,5554445’

DCS allows dialing through a long distance system that requires an access code. When dialed,
the modem dials the phone number first, waits six seconds while the access code request is
made, and then sends the access code 5554445.

SET PHONENUMBER

3 C
om

m
ands

501

SET RESULT

SET RESULT String

The SET RESULT command assigns the specified string value to the Result system variable.

Arguments

String

The String argument specifies the value assigned to the Result system variable.

Comments

The contents of the Result system variable may be modified by several methods. The SET
RESULT command assigns a value to the Result system variable. Throughout the script refer-
ence, you will also see notations of commands, such as TABLE COPY, that assign a value to
the Result system variable. If a task error occurs, DCS will assign a value to the Result system
variable equivalent to the error message.

For a list of error numbers and messages, see Appendix A Task Errors.

Example

In this example:

WHEN ERROR 3
BEGIN
SET RESULT “Run Time Error: “ | RESULT ()
TASKERROR 2
END

a custom routine is established for handling run time errors is established. When a run time
(level 3) error occurs, DCS appends the normal contents of the Result system variable (a level
3 error message) to the string “Run Time Error:” This new string is now stored as the Result
system variable. The level 2 error handling routine is then called using the TASKERROR com-
mand. It will be passed the new Result system variable. These commands allow the script to
handle a run time error as if it were a warning error.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

502

SET RETRY

SET RETRY Boolean

The SET RETRY command tells DCS whether to dial a phone number again after an unsuccessful
connection. (This only affects the modem; no notice will appear in a dialog box.)

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

If the Boolean evaluates to TRUE, DCS redials a phone number continuously until a success-
ful connection is made. If the Boolean evaluates to FALSE, DCS does not redial an unsuccess-
ful connection.

Example

These commands:

SET RETRY TRUE
DIAL ‘5551234’

dial 5551234 repeatedly until a connection is made.

3 C
om

m
ands

503

SET RETRYDELAY

SET RETRYDELAY Delay

The SET RETRYDELAY command indicates the amount of time DCS waits before redialing. This
command applies only to modems.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Delay

The Delay argument is a numeric specifying the number of seconds to wait between successive
redials.

Comments

If a delay less than 30 seconds is specified, DCS delays for the default time of 30 seconds.

Example

After dialing, these commands:

SET RETRY TRUE
SET RETRYDELAY 60

direct DCS to wait for 60 seconds before redialing. DCS only redials if no connection is made,
and then continues to redial every 60 seconds until a connection is established.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

504

SET SENDDELAY

SET SENDDELAY Delay

The SET SENDDELAY command specifies the amount of time for DCS to wait between transmitting
each character when sending data to a host with the SEND command.

Arguments

Delay

The Delay argument is a numeric specifying the delay (measured in units of one-sixtieth of a
second). If a numeric of less than zero units is specified, the Delay argument defaults to zero. If
a numeric of greater than 30 units is specified, the Delay argument defaults to 30 (one-half of
a second).

Example

This command:

SET SENDDELAY 15

directs DCS to wait for 0.25 seconds between each character it transmits with the SEND com-
mand.

3 C
om

m
ands

505

SET SIGNAL

SET SIGNAL Boolean

The SET SIGNAL command is a setting for the DIAL command and specifies whether DCS should
sound the system bell when a connection is made.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

If the Boolean evaluates to TRUE, the bell sounds when a successful connection is made. If the
Boolean evaluates to FALSE, no signal is made to indicate a successful connection.

Example

In this example:

LOAD “SET1”
SET SIGNAL TRUE
DIAL “5551234”

the SET SIGNAL command directs DCS to ring the bell when a connection is made.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

506

SET SOUND

SET SOUND Boolean

The SET SOUND command controls whether warning bells from the host are enabled.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean key-
words ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE
evaluate to FALSE.

If the Boolean evaluates to TRUE, warning bells are enabled. If the Boolean evaluates to
FALSE, warning bells are disabled.

Comments

This command disables warning bells that come into the session window only. It does not dis-
able DCS’s system warnings.

Also see: GENERALCONFIG command

Example

This command:

SET SOUND FALSE

directs DCS not to sound incoming bells from the host system.

3 C
om

m
ands

507

SET STOPBITS

SET STOPBITS Numeric

The SET STOPBITS command sets the interval of time between each character packet sent during a
serial transmission. This interval signals the end of a character packet.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Numeric

The Numeric argument can be one of the following values:

Value Action

 1 Directs DCS to expect 1 stop bit per character packet.

 1.5 Directs DCS to expect 1.5 stop bits per character packet.

 2 Directs DCS to expect 2 stop bits per character packet.

Example

In this example:

SET DATABITS 7
SET STOPBITS 1
SET PARITY MARK

the contents of character packets is established as seven data bits and one stop bit.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

508

SET TERMCLOSE

SET TERMCLOSE Boolean WINDOW WinHandle

The SET TERMCLOSE command specifies whether you will be allowed to close the default session
window during script execution.

Arguments

Boolean

The Boolean argument is specified by a Boolean expression or keyword. The Boolean keywords
ON, YES, and TRUE evaluate to TRUE. The Boolean keywords OFF, NO, and FALSE evalu-
ate to FALSE.

If the Boolean argument evaluates to TRUE, you are allowed to close the session window dur-
ing script execution. If the Boolean argument evaluates to FALSE, you are not allowed to close
the session window during script execution until a SET TERMCLOSE TRUE command is
executed.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to control whether you are allowed to close the session
window specified by the WinHandle argument.

Comments

When the session window cannot be closed, DCS cannot be closed.

If a window handle is not specified, the command is applied to the active session window.

Example

In this example:

SET TERMCLOSE FALSE
PERFORM gather_info
SET TERMCLOSE TRUE

you are not allowed to close a session window while DCS is executing the gather_info
procedure.

3 C
om

m
ands

509

SET TERMFONT

SET TERMFONT FontName SizeX SizeY WINDOW WinHandle

The SET TERMFONT command changes the size of the font displayed in the session window.

Arguments

FontName

The FontName argument no longer has an effect in the session window. This argument
remains in the SET TERMFONT command for backward compatibility. DCS automatically
chooses one of its fonts based on the terminal emulation you have chosen for the session.

SizeX SizeY

The SizeX and the SizeY arguments are integers specifying a valid pixel width and height for
the font.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to change the size of the font in the session window speci-
fied by the WinHandle .

Comments

If a window handle is not specified, the command is applied to the active session window.

Wherever possible use the DISPLAYCONFIG command instead of this command.

Example

This command:

SET TERMFONT ‘’ 8 12

sets the session font to eight pixels wide and twelve pixels high.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

510

SET USERID

SET USERID Text

The SET USERID command changes the characters of the UserID system variable.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Text

The Text argument is the string that the SET USERID command places into the UserID
system variable.

Comments

This command and its system variable are similar in nature to the SET NETID command and
the NetID system variable. Compare with the USERID function.

3 C
om

m
ands

511

SET WILDCARD

SET WILDCARD Str1 Str2

The SET WILDCARD command changes the characters that normally represent arbitrary characters in
a string.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Str1

The first character of the Str1 argument becomes the character that represents any single arbi-
trary character. The question mark (?) normally represents this character.

Str2

The first character of the optional Str2 argument becomes the character that represents any
number of arbitrary characters, including no (zero) characters, or a null character. The asterisk
(*) normally represents this character.

Comments

When using a command or function where the question mark or asterisk must be literal char-
acters rather than wildcard characters, use the SET WILDCARD command to assign a different
character to the wildcard as shown in the first example below.

Example

In this example:

CONNECT
SET WILDCARD “?” “t”
WAIT STRING “***”
SEND $password
SET WILDCARD “?” “*”

DCS sets the wildcard that represents any arbitrary string to t, so the WAIT STRING com-
mand can search for the asterisk (*) character. After sending the $password string, DCS
resets the wildcard character to its normal value.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

512

SET WINDOWTITLE

SET WINDOWTITLE String WINDOW WinHandle

The SET WINDOWTITLE command changes the string displayed in the active window’s title bar to
the specified string.

Arguments

String

The String argument specifies the string to be displayed.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause changes the title of the window to the string specified by WinHandle .

Comments

If a window handle is not specified, the command is applied to the active window.

Example

In this example:

CONNECT “SCR1”
SET WINDOWTITLE “Host Session1”

DCS opens, and connects, to a session window with the name SCR1. DCS then changes the
title of the session window to Host Session1.

3 C
om

m
ands

513

SET WORDWRAP

SET WORDWRAP Column

The SET WORDWRAP command is used in conjunction with the LOGTOFILE command to specify
the column at which to wrap words.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

Column

The Column argument is a numeric (from 0 to n) that specifies the desired column. If the
value of Column is 0 (zero), wordwrap is deactivated.

Example

In this example:

SET WORDWRAP 95
LOGTOFILE “ONLINE.TXT”
PERFORM get_data
FILE CLOSE “ONLINE.TXT”

the word wrap is set to column 95. The LOGTOFILE command directs DCS to open a file
into which the online session will be captured. After the data is received, the file is closed and
saved.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

514

SET XCLOCK

SET XCLOCK Time WINDOW WinHandle

The SET XCLOCK command specifies how long DCS will wait, while sending data to an IBM 3270
system, for an XCLOCK message from the host to be cleared before generating an execution error.

Arguments

Time

The Time argument is a string in the following format:

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

To determine if a run time error has occurred, use the ERROR() function or WHEN ERROR
command.

If a window handle is not specified, the command is applied to the active session window.

Example

In this example:

SET XCLOCK “1:00”
SEND “ “

DCS waits for one minute for the XCLOCK state to be cleared on the host after the SEND
command is executed.

3 C
om

m
ands

515

SET XSYSTEM

SET XSYSTEM Time WINDOW WinHandle

The SET XSYSTEM command specifies how long DCS should wait, when sending data to an IBM
3270 system, for an XSYSTEM message from the host to be cleared before generating an execution
error.

Arguments

Time

The Time argument is a string in the following format:

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Example

In this example:

SET XSYSTEM “2:00”
SEND “ “

an execution error will occur if an XSYSTEM message from the host is not cleared within two
minutes of sending the space character.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

516

SETTINGS

SETTINGS Tab WINDOW WinHandle

The SETTINGS command opens the Session Properties dialog, allowing you to modify an option on
a tab within the dialog before resuming script execution.

Arguments

Tab

The Tab argument is specified by one of the following keywords:

Keyword Action

COMMUNICATIONS Opens the Connectors tab of the Session Properties dialog.

EMULATE Opens the Emulations tab of the Session Properties dialog.

MOUSE Opens the Mouse tab of the Session Properties dialog.

TRANSFERS Opens the File Transfers tab of the Session Properties dialog.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

Comments

The ERROR function returns TRUE if you select the Cancel button in any of the dialogs this
command presents.

If a window handle is not specified, the command is applied to the active session window.

If no session window is open, DCS will open a new session and default to the Connectors tab
regardless of the Tab keyword.

Example

In this example:

SETTINGS COMMUNICATIONS

the Connectors tab of the Session Properties dialog is displayed on the screen, allowing you
to modify the communication settings during script execution.

3 C
om

m
ands

517

SHOW

SHOW

The SHOW command directs DCS to display script commands in a dialog box as they execute.

Arguments

The SHOW command takes no arguments.

Comments

The DCS compiler resolves the SHOW command at compile time. The SHOW command
displays the commands that execute from the routine in which you have placed the SHOW
command. Therefore, you must insert the SHOW command into each subroutine you want to
debug.

The NOSHOW command will cancel the SHOW command.

Example

See the DEBUG command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

518

SPAWN

SPAWN SAFE Target WINDOW WinHandle

The SPAWN command instructs DCS to start another script. The spawned script runs independently
of the script which spawned it. The original script also continues to execute without interruption.

Arguments

SAFE

The optional SAFE keyword prevents the target script from starting if it would be attached to
a default session window handle that already has at least one script attached to it. In this way
the SPAWN command could avoid starting a competing script in a session window to which a
script is already attached.

Target

The Target argument is a string specifying the script to start.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular window in DCS.

The WINDOW clause directs DCS to assign the specified window handle as the new script’s
default session handle.

Comments

The SPAWN and PERFORM commands are similar. The SPAWN command provides different
functionality, however. With PERFORM, execution of the calling script is interrupted until
the Target of the PERFORM command completes execution and returns. With the SPAWN
command, the Target script executes completely independently and asynchronously.

Example

In this example:

$DCscript = “dodde.dct”
%hndle = WINDOWHND(“Session1”)
SPAWN SAFE $DCscript WINDOW %hndle

This example causes the script dodde.dct to run and act upon Session1 only if no other
script is already attached to that session.

3 C
om

m
ands

519

SWITCH

SWITCH SwitchVariable
CASE Var1:
Command
LEAVE
CASE Var2:
Command
LEAVE

DEFAULT:
Command
LEAVE
SWITCH END

The SWITCH command allows script execution to branch to multiple command blocks.

Arguments

SwitchVariable

The SwitchVariable argument is a numeric or string variable or expression that is compared to
each CASE variable.

CASE Varn
 Command
 LEAVE

Each CASE clause compares the Varn argument with the SwitchVariable. The Command
argument is a command or command block which DCS executes if the variables match. If the
variables do not match, DCS compares the SwitchVariable to the next CASE variable. If an
optional LEAVE command is inserted, execution branches past SWITCH END to the line fol-
lowing execution of the Command argument.

DEFAULT:
 Command
 LEAVE

DCS executes the optional DEFAULT clause and Command block if none of the CASE clauses
match the SwitchVariable.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

520

Example

In this example:

SWITCH $char
CASE “A”:
DISPLAY “Apple^M”
LEAVE
CASE “B”:
DISPLAY “Ball^M”
LEAVE
CASE “C”:
CASE “D”:
DISPLAY “Candy/Dog^M”
LEAVE
DEFAULT:
DISPLAY “none^M”
LEAVE
SWITCH END

DCS compares the contents of the string variable $char to each of the cases. If the contents
match the string argument for one of the cases, the script displays the appropriate string. For
example, if $char contains “B”, the script displays “Ball” followed by a carriage return.

SWITCH, continued

3 C
om

m
ands

521

SYSTEM

SYSTEM SysNum P1, P2, …

The SYSTEM command provides script access to operating system-level parameters and environment
variables.

Note: This command does not apply to IBM TN3270 emulations.

Arguments

SysNum

The SysNum argument is specified by a hexadecimal value from the table below.

P1, P2, …

The optional Pn arguments are specified by one or more integers or strings.

SysNum Definition
0x00FF The command sends a string to a debugging terminal. The first parameter for

the command is a string that you want to send to the debugging terminal. The
second parameter is a null, or empty, string. To use this command you must run
DBWIN.EXE. For further information about debugging terminals and DBWIN.EXE,
see the Microsoft Windows Software Development Kit (SDK) and the discussion of
the OutputDebugString function in the SDK.

 SYSTEM 0x00FF “Procedure succeeded.” “”

0x0701 This command executes the Windows WinHelp function and opens a help file at
a topic defined by a context number of the help file. The context number must be
contained in the Map section of the help file’s HPJ or in one of the HPJ’s support
files.

 The first parameter for this command is a string parameter, which is the path name
of the help file.

 The second parameter for this command is an integer, indicating the Windows help
function that you would like to access. These numbers are located in WINDOWS.H,
which is a part of the Microsoft Windows Software Development Kit (SDK).

 The third parameter is an integer, which is the context number of the topic that you
want to display.

 Do not use pointers or custom data types with this command.

 SYSTEM 0x0701 $FileName $WinFuncNum %ContextNum
0x0702 This command executes the Windows WinHelp function and opens a help file at

a topic where WinHelp finds the first instance of a keyword (or phrase) in the help
file.

 The first parameter for this command is a string parameter, which is the path name
of the help file.

 The second parameter for this command is an integer, indicating the Windows help
function that you would like to access. These numbers are located in WINDOWS.H,
which is a part of the SDK.

 The third parameter is a string, which is a keyword in the help file.
 Do not use pointers or custom data types with this command.

 SYSTEM 0x0702 $FileName %WinFuncNum %ContextNum

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

522

SysNum Definition

0x0803 This command changes the font used in the previous dialog in the script.
 The first parameter is a string specifying the title of the dialog box or an empty

string.
 The second parameter identifies a particular dialog control as specified by one

of the following string values: “ICON”, “MESSAGE”, “BUTTON”, “ICONBUTTON”,
“RADIOGROUP”, “RADIOBUTTON”, “CHECKBOX”, “EDITTEXT”, “LISTBOX”,
“GROUPBOX”

 The third parameter identifies a particular control as specified by a control index
number. This follows the same syntax as the existing script dialog verbs (“Edittext”
1 , “Message” 5 , etc.).

 The fourth parameter is either the string “Fixed,” or “Variable.” Other values are ig-
nored. “Fixed” will assign the system Fixed-pitch font to the specified control. “Vari-
able” will assign the System Variable-pitch font to the control. Note that in Windows
3.0 and above, the default font for dialog controls is the System Variable font.

 The fifth parameter is optional and identifies a particular dialog as specified by a
dialog index number.

SYSTEM 0x0803 $DlgTitle $control %index \
$font [%dlgIndex]

0x0900 This command sets the font size for the next dialog in the script to 8 point.

SYSTEM 0x0900

0x0901 This command changes the title in a dialog box created by a DCS script.
 For this command to affect the title bar of the dialog box, the dialog box must have

been defined with a title bar, and the title must be something other than an empty
or null string.

SYSTEM 0x0901 “Changed Title Name”

Comments

The parameters listed in this electronic document are always the most up-to-date. However,
please note that the parameters for this command are not universal between versions of DCS
and are subject to change without notice.

Contact FutureSoft Technical Support for information or questions about the SYSTEM com-
mand.

Also see: SYSTEM function

Example

See each entry in the table above for a syntax example.

SYSTEM, continued

3 C
om

m
ands

523

TABLE CLEAR

TABLE CLEAR Table

The TABLE CLEAR command clears any existing data from a specified table.

Arguments

Table

The Table argument is a numeric specifying the table number.

Comments

Because structured tables are maintained in memory, clearing a table makes more memory
available.

Example

In this example:

TABLE DEFINE 0 FIELDS CHAR 20 CHAR 10
TABLE LOAD 0 FROM “EXPENSES” AS SYLK
PERFORM modifyData
TABLE SAVE 0 TO “EXPENSES” AS SYLK
TABLE CLEAR 0

a structured table is defined and data loaded into it. When the table has been modified, it is
saved to a file and cleared from memory.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

524

TABLE CLOSE

TABLE CLOSE Table

The TABLE CLOSE command closes a table.

Arguments

Table

The Table argument is a numeric specifying the table number.

Example

In this example:

TABLE DEFINE 5 TEXT “MYFILE.TXT”
@R5 = “New Line”
RECORD WRITE 5
TABLE CLOSE 5

the TABLE CLOSE 5 statement closes Table 5 (five) after the script writes the string “New
Line” into MYFILE.TXT.

3 C
om

m
ands

525

TABLE COPY

TABLE COPY SourceTable TO DestTable Contents String

The TABLE COPY command copies the contents of the specified source table to the specified destina-
tion table.

Arguments

SourceTable

The SourceTable argument is a numeric (from 0 to 15) specifying the table number of the
source table.

DestTable

The DestTable argument is a numeric (from 0 to 15) specifying the table number of the desti-
nation table.

Contents String

The optional Contents argument is one of the following keywords:

Keyword Action

INCLUDE Directs DCS to copy only those records that begin with the specified String.

EXCLUDE Directs DCS to copy all records except those that begin with the specified
String.

RANGE Specifies a range of characters or fields to be copied from the specified re-
cords. You must follow the RANGE keyword with a beginning record or byte
number and an ending record or byte number.

 Structured Tables

The RANGE values are record numbers. Remember that DCS begins numbering the
first record in a structured table and the first byte in a text table with zero.

 Text Tables

The RANGE values are characters positions or byte numbers in the table. A record
may have a maximum of 254 characters. When performing a RANGE copy from a
text table, the last full line is always copied to the destination table.

Comments

The Result system variable is set to the number of records copied.

If the destination table does not exist, the new table is created. If an existing table is replaced,
any data in the existing table is overwritten.

Both source and destination tables must have the same format.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

526

Example

In this example:

TABLE COPY 1 TO 2 EXCLUDE “_”
DISPLAY RESULT () | “ records copied”

the records from Table 1 (one) are copied to Table 2 (two), except for underscore characters,
and then displays the number of records copied.

In this example:

TABLE DEFINE 0 TEXT “test.TXT”
TABLE DEFINE 1 TEXT “testout.TXT”
TABLE COPY 0 TO 1 RANGE 3 9
TABLE CLOSE 0

the characters in positions 3 (three) through 9 (nine) are copied from Table 0 (zero) to Table 1
(one).

TABLE COPY, continued

3 C
om

m
ands

527

TABLE DEFINE

TABLE DEFINE Table FIELDS f1...fi FILE TEXT FileName

The TABLE DEFINE command creates one of two types of tables.

Tables allow for manipulation of whole files or masses of data. Two types of tables are possible: struc-
tured or text. Structured tables have fixed length records of fixed length fields. Text tables have records
of any number of bytes from 1 to 254.

Arguments

Table

The table argument is an integer (from 0 to 15) specifying the table number. All references to a
table will reference this number.

 Structured Tables

 FIELDS f1…fi

The FIELDS clause defines the record layout for the table data (and corresponding
record buffer). Each fi argument includes:

1 One of the following keywords specifying the logical data type for the field:
CHAR INT REAL

2 An integer specifying the length of the field

A field may have a maximum length of 254 bytes. A table may have a maximum of
254 fields in a record (numbered 1 to 254). A table definition determines the number
of fields in a table’s record.

 FILE

The optional FILE keyword temporarily stores the data as a file-based table on disk
(for tables 64K in size, or larger) until the script ends or until DCS executes a TABLE
CLOSE command. A table can be saved to a permanent file with the TABLE SAVE
command. If you have not included the FILE keyword, the table is maintained in
memory.

 Text Tables

 TEXT FileName

The FileName argument specifies the file which fills the table. Any changes made to
the table are reflected in changes to the file. If the file does not exist, an empty table is
created on the computer hard drive.

Comments

All data maintained in a file is stored as a string. The CHAR, INT, and REAL data type speci-
fications maintain the logical data type for data import and export to other applications.

Fields specified as either INT or REAL are maintained as right-justified fields.

DCS cannot directly access table data. It must access one record at a time through the corre-

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

528

sponding record buffer variable @Rn, where n is the table number. Table data is read with the
RECORD READ command and written to a table with the RECORD WRITE command.

DCS clears the contents of a currently defined table when the script executes another TABLE
DEFINE command with the same number as the currently defined table.

A record in a table may contain a maximum of 254 characters.

Example

In this example:

TABLE DEFINE 1 FIELDS CHAR 10 INT 5 SAVE DATA

Table 1 (one) is defined as a file-based structured-record table, with two fields per record. Field
1 (one) is a character type and has ten characters. Field 2 (two) is an integer type and has five
characters.

In this example:

TABLE DEFINE 1 TEXT “MEMO.TXT”

*ReadLoop
RECORD READ 1 at 0
WHILE NOT EOF ()
BEGIN
DISPLAY @R1 | “^M”
RECORD READ 1
END
TABLE CLOSE 1

Table 1 (one) is defined as a text table containing characters from MEMO.TXT. The script then
presents the text of the table, one line at a time, in the active session window.

In this example:

TABLE DEFINE 1 TEXT “BUDGET.XLS”

the TABLE DEFINE command redefines Table 1 (one) as a text table.

TABLE DEFINE, continued

3 C
om

m
ands

529

TABLE LOAD

TABLE LOAD Table FROM Source AS Format

The TABLE LOAD command imports data from a file or the clipboard to a structured table.

Note: This command is used only with structured tables.

Arguments

Table

The Table argument is an integer (from 0 to 15) specifying the number of the table into which
to load the data.

FROM Source

The FROM clause specifies the source of the data. The value of the Source argument is either
the keyword CLIPBOARD, or the name of a file. If the Source argument specifies a data file, a
valid file name must be used.

AS Format

The AS clause specifies the standard data format in which to store the imported data. The
Format argument is one of the following keywords:

DIF DYNACOMM SYLK TEXT

 The DYNACOMM format is valid only for file-based tables and cannot be used for data
interchange (see the TABLE DEFINE command).

Example

This command:

TABLE LOAD 5 FROM “FORECAST.SYL” AS SYLK

loads the contents of FORECAST.SYL into table five in SYLK format.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

530

TABLE SAVE

TABLE SAVE Table TO Destination AS Format

The TABLE SAVE command exports the contents of a structured table to either the clipboard or a file.

Note: This command is used only with structured tables.

Arguments

Table

The Table argument is an integer (from 0 to 15) specifying the table whose contents you want
to save.

TO Destination

The TO clause specifies the destination of the table’s data. The Destination argument is either
the keyword CLIPBOARD, or the name of a file. If you use the Destination argument to
specify a data file, it must be a string specifying a valid file name for your system.

AS Format

The AS clause specifies the standard data format in which to store the table’s data. The Format
argument is one of the following keywords:

DIF DYNACOMM SYLK TEXT

The DYNACOMM format is valid only for file-based tables and cannot be used for data
interchange.

Example

In this example:

WHEN POKE 0 TABLE 0 “item0”
BEGIN
DISPLAY “POKE DATA RECEIVED”
TABLE SAVE 0 TO “DATA” AS SYLK
END

when a POKE is received from the DDE client on the topic item0, DCS displays the message
“POKE DATA RECEIVED” in the session window and saves the received data to the file
named DATA.

3 C
om

m
ands

531

TABLE SORT Table Fld1 Dir1 Fld2 Dir2 Fld3 Dir3

The TABLE SORT command sorts the contents of a structured table based upon a sort criteria.

Note: This command is used only with structured tables.

Arguments

Table

The Table argument is a numeric (from 0 to 15) specifying the table to sort.

Fldn Dirn

Each Fldn Dirn argument pair defines a sort criterion. The Fldn argument is an integer specify-
ing the desired field number. The Dirn argument is specified by one of the following keywords:

ASCEND DESCEND

The ASCEND keyword performs the sort in ascending order. The DESCEND keyword per-
forms the sort in descending order.

Comments

A maximum of three sort keys can be defined. The second sort key is used only when there are
two or more identical items from the first sort key.

Example

This command:

TABLE SORT 0 1 ASCEND 5 DESCEND

sorts Table 0 (zero) using two criteria. It is first sorted in ascending order using the contents
of field 1 (one). If there are two or more identical items from the first sort, a second sort is
performed in descending order using the contents of field 5 (five).

TABLE SORT

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

532

TASKERROR Level Code

The TASKERROR command calls the DCS internal execution error-handling routine and passes the
error level and code.

Arguments

Level

The optional Level argument is a numeric, from 0 (zero) to 4 (four) that specifies the desired
error level. The following error levels are available:

Level Meaning

0 (zero) Fatal

1 (one) Critical

2 (two) Warning

3 (three) Run time

4 (four) User-defined

Note: If a Level argument is not included, error level 3 (three) is used.

Code

The optional Code argument is a numeric specifying the three-digit error code that identifies
the type of error. The error message displayed depends on the code. If you do not include the
Code argument, three zeros (000) is passed as the code. If you include the Code argument
you must include the Level argument.

Comments

This command can simulate the occurrence of an execution error of a type you specify. See
Appendix A Task Errors.

All error codes outside of the range 100-999 produce the string “User-defined error”.

Error level 3 (three - run-time) does not cause the display of an error message. To display an
error message, the script must trap a level 3 error with a WHEN ERROR 3 command (see the
example).

Also see: SET RESULT command

TASKERROR

3 C
om

m
ands

533

Example

;set traps to handle errors
when error 0 perform HandleError(0)
when error 1 perform HandleError(1)
when error 2 perform HandleError(2)
when error 3 perform HandleError(3)

;simulate three user-defined errors
taskerror 0 221 ; a “real” error
taskerror 1 221 ; a “real” error
taskerror 2 221 ; a “real” error

taskerror ; default
taskerror 3 ; default
taskerror 3 99 ; custom

cancel

;error trap routine
*HandleError(%level)

$level=str(%level)
$result=result()
dialog “Error Handler — Level “ | $level

message “Error Text:”
message $result
button default “OK” resume

dialog end
wait resume
dialog cancel

return

TASKERROR, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

534

TASKSTOP taskID

The TASKSTOP command will stop the script with the given taskID.

Arguments

taskID

The argument is a numeric, specifying the desired script to stop.

Comments

Use the menu option Script: Status... to see a list of running scripts.

See also the SPAWN command.

See also the TASKNAME function.

See also the TASKFILE function.

See also the TASKLIST function.

Example:

spawn "script2"
spawn "simpledlg"
spawn "dialogupdate"
dialog (7,7) "Stop all other scripts"
 message "tasklist_________________________________"
 message "taskid___________________________________"
dialog end
$meTask = TASKLIST(-1)
$allTasks = TASKLIST()
dialog update message 1 $allTasks
WHILE($allTasks != "")
BEGIN
 parse $allTasks $tID "," $allTasks
 dialog update message 2 $tID | " " | taskname(NUM($tID))
 wait delay "2"
 if($tID <> $meTask)
 TASKSTOP num($tID)
END
dialog update message 1 "Nobody but me!"
wait delay "9"
cancel

TASKSTOP

3 C
om

m
ands

535

TIMER RESET

TIMER RESET Timer

The TIMER RESET command directs DCS to set a timer to zero.

Arguments

Timer

The Timer argument is a numeric from 0 (zero) to 3 (three) that specifies a timer to reset. Four
separate timers can be maintanied in a single script. These timers can only be accessed through
a script.

Example

In this example:

TIMER RESET 0
CONNECT
PERFORM login1
DISPLAY “Connected to login 1 for “ | TIMER (0)
TIMER RESET 0

the timer is reset before the login. By using the TIMER () function, the script provides the
length of the login process or how long DCS has been connected to the remote system up to
that point in the script.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

536

TITLE

TITLE String

The TITLE command assigns a title to a script. While the script executes, the String argument displays
in the title bar of the DCS application window.

Arguments

String

The String argument specifies a title. A literal string of characters enclosed within quotation
marks must be used, not a string variable. The maximum length of the String argument is 61
characters.

Comments

Only one title may be assigned to each task file.

Also see: Set AppTitle command

 Set WindowTitle command

Example

When DCS executes this script segment:

TITLE “My Script”

the text in the DCS window changes to “My Script”.

3 C
om

m
ands

537

TOOLBARHIDE

TOOLBARHIDE BarName

The TOOLBARHIDE command closes the specified toolbar, removing it from view in the application
window.

Arguments

BarName

The BarName argument is used to specify which toolbar to hide. It must be one of the follow-
ing toolbars:

ALL FILE SESSION TRACE OLE

STANDARD EDIT TRANSFER SCRIPT

or the name assigned to a user-defined toolbar.

Comments

Toolbars hidden via scripting will remain hidden, even after DCS has been restarted, until
shown again.

Also see: TOOLBARSHOW command

Example

This line of script:

TOOLBARHIDE “transfer”

hides the Transfer toolbar. If the toolbar is already hidden, the command has no effect.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

538

TOOLBARSHOW

TOOLBARSHOW BarName

The TOOLBARSHOW command opens the specified toolbar, displaying it in the toolbar area of the
application window.

Arguments

BarName

The BarName argument is used to specify which toolbar to show and must be one of the fol-
lowing:

ALL FILE SESSION TRACE OLE

STANDARD EDIT TRANSFER SCRIPT

or the name assigned to a user-defined toolbar.

Comments

Toolbars displayed via scripting will remain visible, even after DCS has been restarted, until
hidden.

Also see: TOOLBARHIDE command

Example

This line of script:

TOOLBARSHOW “transfer”

displays the transfer toolbar. If the toolbar is already visible, the command has no effect.

3 C
om

m
ands

539

TRANSFERS

TRANSFERS CommandProcessor BLOCKSIZE Status Length ISSUECLEAR Sta-
tus PACKETSIZE Number HOSTPROGRAM FileName RECORDLENGTH Status
Length RECORDFORMAT Type SPACE Status InitialSpace AddedSpace UNITS Type
CPUUSAGE Number TIMEOUT Number HOSTCODEPAGE Country PCCODEPAGE
Country WINDOW WinHandle

The TRANSFERS command sets the parameters in which DCS will send and receive files using a
remote computer and its command processor. This command only sets the parameters for file transfers
involving the IND$File file transfer program, or similar mainframe transfer programs.

Arguments

CommandProcessor

The optional CommandProcessor argument is either the CMS or TSO keyword.

BLOCKSIZE Status Length

Include the optional BLOCKSIZE clause to transfer a file with a remote system with a TSO
command processor.

The BLOCKSIZE clause includes the keyword BLOCKSIZE and the Status clause. The Sta-
tus clause includes either:

Clause Action

ON Length Specifies to use the value of the Length argument to determine the block
length of the host data set.

 The Length argument is an integer and determines the size of the host data
set in units of bytes.

 The default value for a data set block size is 80.

OFF Specifies that the default length associated with the BLOCKSIZE clause
is to be used to determine the size for a unit of space allocated with the
SPACE option of the TRANSFERS command (when you have not included
the UNITS clause in the command).

ISSUECLEAR Status

Include the optional ISSUECLEAR clause to transfer a file with a remote system with a VM/
CMS command processor.

The ISSUECLEAR clause includes the ISSUECLEAR keyword and the Status keyword of
either:

Keyword Action

ON Directs the remote system to clear the terminal screen before a file transfer
is initiated.

OFF Directs that the remote system should not automatically clear the terminal
screen before a transfer.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

540

PACKETSIZE Number

The optional PACKETSIZE clause specifies the size of data packets transferred to and from the
remote system command processor.

The PACKETSIZE clause includes the keyword PACKETSIZE and the Number argument.
The Number argument is an integer (from 0 to 32). However, if the file transfer is a non-SNA
transfer, the maximum packet size is 7 (seven). SNA transfers can be as large as 32. Transfers
with an old version of the IND$FILE transfer program should use a packet size of 2 (two).

HOSTPROGRAM FileName

The optional HOSTPROGRAM clause allows access to a variety of file transfer programs on a
remote system.

The HOSTPROGRAM clause is composed of the HOSTPROGRAM keyword and the File-
Name argument. The FileName argument is a string of a valid file name for a file transfer
program on the remote system.

The default file transfer program for DCS is IND$FILE.

RECORDLENGTH Status Length

Include the optional RECORDLENGTH clause when a file is transferred with a remote system
that has a TSO or VM/CMS command processor. The RECORDLENGTH clause is composed
of the RECORDLENGTH keyword and the Status clause.

The Status clause includes either:

Clause Keywords Action

ON Length Specifies that the remote system is to use the value of the Length
argument to determine the length of a logical record in a host data
set. The Length argument is an integer that determines the size
of a record in units of bytes. If a file on the remote system is being
appended or replaced, the remote system ignores the RECORD-
LENGTH clause or its default. On a remote system with a TSO
command processor, the default length of a fixed or undefined length
record is 80 bytes; however, the default for a variable length record is
84 bytes. On a remote system with a VM/CMS command processor,
the default length of a fixed length record is 80 bytes, and the default
length of a variable length record is 84 bytes.

OFF Specifies that the remote system is to use the default record length
associated with the particular command processor and record format
involved in the transfer.

TRANSFERS, continued

3 C
om

m
ands

541

RECORDFORMAT Type

Include the optional RECORDFORMAT clause to send a file to a remote system with a TSO
or VM/CMS command processor.

he RECORDFORMAT clause includes the RECORDFORMAT keyword and the Type argu-
ment. The Type argument may be one of the following keywords:

Files Sent to Possible Keywords

TSO command processor FIXED, VARIABLE, or UNDEFINED

VM/CMS command processor FIXED or VARIABLE

SPACE Status InitialSpace AddedSpace

Include the optional SPACE clause when a file is sent to a remote system that has a TSO com-
mand processor.

The SPACE clause includes the keyword SPACE and the Status clause. The Status clause
includes either:

Clause Options Action

ON InitialSpace AddedSpace The ON keyword specifies to use the InitialSpace and
AddedSpace arguments to determine the total amount of
space allocated to a new data set. The InitialSpace argu-
ment is an integer that specifies the initial number of units
allocated to a new data set. The AddedSpace argument
is an integer that specifies the number of units of space
added to the initial space (when the initial space fills with
the new data set, and when the data set requires more
space on the system). The maximum number of units that
might be available on a remote system is [AddedSpace +
(15 x InitialSpace)]. The units for the SPACE clause are
determined by the UNITS clause of the TRANSFERS com-
mand.

OFF The OFF keyword specifies that the remote system is to
use default values for space allocation.

UNITS Type

Include the optional UNITS clause when DCS sends a file to a remote system that has a TSO
command processor. The UNITS clause incudes the keyword UNITS and the Type argument.

The Type argument is specified by one of the following keywords:
BLOCKS TRACKS CYLINDERS

The UNITS clause determines the unit of space used by the SPACE clause.

TRANSFERS, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

542

CPUUSAGE Number

The optional CPUUSAGE clause determines how long DCS controls the CPU on your PC
during a file transfer.

The CPUUSAGE clause includes the keyword CPUUSAGE and the Number argument. The
Number argument is an integer between 1 (one) and 9 (nine), inclusive. The default value is 5
(five).

TIMEOUT Number

The optional TIMEOUT clause sets the amount of time DCS waits for a remote system to
respond to a transfer request.

The TIMEOUT clause includes the keyword TIMEOUT and the Number argument. The
Number argument is an integer indicating an amount of time in units of seconds. The default
Number argument value is 30 seconds.

HOSTCODEPAGE Country PCCODEPAGE Country

The optional HOSTCODEPAGE and PCCODEPAGE clauses set the code pages for a file
transfer via script. Code pages set with these options override previous session settings. The
Country argument for either HOSTCODEPAGE or PCCODEPAGE is one of the following
strings:

Australia Belgium Canada (English)

Canada (French) Denmark Finland

France Germany Italy

Latin America Netherlands Norway

Portugal Spain Sweden

Switzerland (French) Switzerland (German) United Kingdom

United States International ANSI

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to set up transfer parameters for the session specified by the
WinHandle.

TRANSFERS, continued

3 C
om

m
ands

543

TRANSFERS, continued

Comments

The parameters in this command determine the operation of a file transfer started by a file
transfer command (FILE SEND BINARY or FILE RECEIVE BINARY). If you do not in-
clude the TRANSFERS command in a script before a file transfer command, the file transfer
command uses the existing transfer parameters of the session or uses the relevant parameters
defined prior to a previous file transfer command.

If the WINDOW clause is not included, DCS changes the transfer parameters for the active
session window.

Example

In this example:

TRANSFERS CMS \
BLOCKSIZE OFF \
ISSUECLEAR OFF \
BUFFERSIZE 2 \
HOSTPROGRAM “IND$FILE” \
RECORDLENGTH OFF \
RECORDFORMAT FIXED \
SPACE OFF \
UNITS BLOCKS \
WINDOW 1234

$PATH = DIRECTORY (SCRIPT) | “B.DCP”

FILE SEND BINARY $PATH AS “TEST” “TASK” “A” \
ASCII NOCRLF WINDOW 1234

the transfer environment is set with the TRANSFERS command, and then the file whose file
name is in $PATH, is sent to the remote system with the FILE SEND BINARY command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

544

WAIT CHAR

WAIT CHAR Character WINDOW WinHandle

The WAIT CHAR command pauses execution until the specified character is received in the session
window.

Note: The EDIT COPYSPECIAL command does not apply to the IBM TN3270 emulation.

Arguments

Character

The Character argument specifies a character for which to wait.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to wait for character echo from a remote system in a specific
session window.

Comments

If the window handle is not included, the command is applied to the active session window.

To wait until a host is in a ready state before sending data, see the special strings for use with
the SEND command.

Example

This example:

DISPLAY “Please enter ‘g’ to go to next menu: ^M
WAIT CHAR ‘g’
DISPLAY “Thank You. ^M”

works only in session windows using a terminal emulation other than 3270. The script exam-
ple prompts you to press the [G] key. The WAIT CHAR command pauses the execution of the
script until you press the [G] key (lower case letter g). After the [G] key is pressed, “Thank
You.” appears in the session window

This example:

DISPLAY “Execution Paused, Hit Control-D To Continue: ^M”
WAIT CHAR CHR (0x04)

works only in session windows using a terminal emulation other than 3270. In this script frag-
ment, the WAIT CHAR command pauses the execution of the script until a Control-D enters
the session window. The hexadecimal number 0x04 represents Control-D in a script.

3 C
om

m
ands

545

WAIT CLOSE

WAIT CLOSE WINDOW WinHandle

The WAIT CLOSE command pauses script execution until you close a text file opened by the LOGTO-
FILE command.

Note: The EDIT COPYSPECIAL command does not apply to the IBM TN3270 emulation.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause directs DCS to wait until the text file opened in a specific window is
closed.

Comments

If the WinHandle is not included, the command is applied to the active window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

546

WAIT DELAY

WAIT DELAY Time

The WAIT DELAY command pauses the execution of a script for a specified period of time.

Arguments

Time

The Time argument is a string in the following format:

hh:mm:ss.fff

where:

Time Element Description

hh Optional integer character string for a number of hours

mm Optional integer character string for a number of minutes

ss Required integer character string for a number of seconds

fff Optional integer character string for a fraction of a second

For this command to pause a script for only a fraction of a second, the Time argument must
have the following format:

0:0:0.fff

The format for pausing less than a second requires that you include a 0 (zero) for the hours,
minutes, and seconds strings (with the colon between each) and that you include a period
before the string for a fraction of a second.

Comments

A WAIT DELAY value of zero (WAIT DELAY “0”) is a special case of the WAIT DELAY com-
mand. This form of the command activates a WHEN command without entering a wait state.
If a RESUME command executes after execution of WAIT DELAY “0”, execution of the script
branches past the current WAIT command (the last WAIT command prior to execution of the
WAIT DELAY “0” command, if any).

The script language allows this command to wait a fraction of a second.

3 C
om

m
ands

547

Examples

This command:

WAIT DELAY “00:10”

directs DCS to pause script execution for ten seconds.

In this example:

WHEN TIMER “5” PERFORM CountSub
WAIT RESUME
DISPLAY “Aborted”
CANCEL

*CountSub
DIALOG
MESSAGE “Count: “
BUTTON CANCEL “Cancel” RESUME
DIALOG END
SET %counter 1
WHILE (TRUE)
BEGIN
DIALOG UPDATE MESSAGE 1 “Count: “ | STR (%counter)
INCREMENT %counter
WAIT DELAY “0”
END

a dialog box displays while a loop executes. Each time the WAIT DELAY “0” command
executes, the script checks for the activation of a WHEN command. Because DCS treats active
dialog controls as WHEN commands, DCS is able to determine if someone has selected the
Cancel button during the execution of the loop.

Since the WAIT DELAY “0” command does not create a wait state, the execution of the
RESUME command causes execution to cancel.

In this example:

WAIT DELAY “0:0:0.25”

the script waits for one quarter second.

WAIT DELAY, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

548

WAIT ECHO WINDOW WinHandle

The WAIT ECHO command pauses script execution until any character is received from the remote
system.

Arguments

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to wait for character echo from a remote system in a specific
session window.

Comments

If the WINDOW clause is not included in the command, DCS will wait for character echo in
the active session window.

To wait until a host is in a ready state before sending data, see the special strings for use with
the SEND command.

Example

In this example:

WHEN QUIET ‘30’
BEGIN
DISPLAY (0,0) “No Prompt”
CANCEL
END
WAIT ECHO
IF SEARCH (‘ID:’) <> -1
SEND ‘USER’

DCS waits 30 seconds to receive input from the remote system. The SEARCH function then
determines if the host sent an expected prompt.

WAIT ECHO

3 C
om

m
ands

549

WAIT EDIT

WAIT EDIT (x, y, w, h) FileName

The WAIT EDIT command invokes the memo editor and pauses script execution until you close the
memo editor.

Arguments

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the position and size of a memo window. It
indicates the top left corner (x, y), the width (w), and the height (h).

FileName

The optional FileName argument is a string specifying the name of the file to edit. The File-
Name argument must specify a valid file name for your system.

If FileName is the string “?”, DCS prompts for a file name during script execution.

If FileName is not provided or is the null string “”, DCS opens a new memo window.

Comments

Closing the memo window resumes script execution at the line following the WAIT EDIT com-
mand. The document is saved automatically.

Executing a RESUME command is equivalent to closing the memo child window.

Example

In this example:

WAIT EDIT “bills.TXT”
PERFORM file_transfer

the script opens the memo file BILLS.TXT and pauses script execution until the memo
window is closed.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

550

WAIT PROMPT

WAIT PROMPT NumChar WINDOW WinHandle

The WAIT PROMPT command pauses execution until a specified number of characters is received in a
session window.

Note: The WAIT PROMPT command does not apply to the IBM TN3270 emulation.

Arguments

NumChar

The NumChar argument is an integer specifying a number of characters to receive.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular session window.

The optional WINDOW clause directs DCS to wait for the characters in a particular session
window.

Comments

If the WINDOW clause is not included in the command, DCS waits for the characters in the
active session window.

DCS counts every character received.

To wait until a host is in a ready state before sending data, see the special strings for use with
the SEND command.

Example

In this example:

WAIT PROMPT 10
PERFORM trial_run

script execution pauses until ten characters are received in the session window, then trial_
run is performed.

3 C
om

m
ands

551

WAIT QUIET

WAIT QUIET Time WINDOW WinHandle

The WAIT QUIET command pauses the execution of a script for a specified period of time wherein no
character transmission occurs.

Arguments

Time

The Time argument is a string in the following format:

hh:mm:ss

where:

Time Element Description

hh Optional integer character string for a number of hours

mm Optional integer character string for a number of minutes

ss Required integer character string for a number of seconds

fff Optional integer character string for a fraction of a second

 WINDOW WinHandle

The optional WINDOW clause specifies to watch for character transmission in a specific session
window. The WINDOW clause is composed of both the WINDOW keyword and the WinHan-
dle argument.

The optional WinHandle argument is an integer that identifies a particular session window.

Comments

If the WINDOW clause is not included in the command, DCS will watch for character trans-
missions in the active session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

552

Example

These commands:

CONNECT
WAIT STRING “login:”
SEND $UserName | “{ENTER}”
WAIT QUIET “00:02”
SEND $Password | “{ENTER}”

demonstrate an example of a simple login script for a 3270 terminal. DCS connects to the
host, waits for the characters “login:” to appear, and then sends the string in $UserName
followed by a carriage return. DCS then suspends the scripts execution until communication
activity has stopped for two seconds. At this point in this script segment, the host is assumed
to be ready for the password.

These commands:

DIAL
WAIT STRING “login:”
SEND $UserName
WAIT QUIET “00:02”
SEND $password

demonstrate another example of a simple login script, but for a non-IBM TN3270 terminal.

WAIT QUIET, continued

3 C
om

m
ands

553

WAIT RESUME

WAIT RESUME

The WAIT RESUME command pauses execution until you select the Resume option in the Script
menu, or DCS executes a RESUME command.

Arguments

The WAIT RESUME command takes no arguments.

Example

In this example:

DIALOG “EDIT”
EDITTEXT 120 “Enter Name:”
BUTTON DEFAULT “OK” RESUME
BUTTON CANCEL “CANCEL” CANCEL
DIALOG END
WAIT RESUME
DIALOG CANCEL

DCS displays a dialog box, then waits for an option to be selected before resuming script
execution.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

554

WAIT SCREEN

WAIT SCREEN WINDOW WinHandle

The WAIT SCREEN command pauses script execution until the remote host changes the data in the
session window.

Arguments

WINDOW WinHandle

The optional WINDOW clause is composed of both the WINDOW keyword and the WinHan-
dle argument. The WinHandle argument is an integer identifying a particular session window.

The WINDOW clause directs DCS to wait for data to change in a specific session window.

Comments

Only one character needs to be updated for the session window to be considered a new screen.

If the WINDOW clause is not included in the command, DCS waits for data to change in the
active session window.

To wait until a host is in a ready state before sending data, see the special strings for use with
the SEND command.

Example

In this example:

WAIT STRING “USERID”
SEND “MYID”
WAIT SCREEN
SEND “PROFS”

DCS waits for the remote system to display the text “USERID” in the session window, then
sends the string “MYID” to the remote system. After sending “MYID”, DCS waits for the
remote system to display new data in the session window. After the contents of the session
window changes, DCS sends a command, “PROFS”, to the remote system.

3 C
om

m
ands

555

WAIT STRING

WAIT STRING String QUIET Time Window WinHandle

The WAIT STRING command pauses execution until DCS receives a string during a session.

Note: The WAIT STRING command does not apply to the IBM TN3270 emulation.

Arguments

String

The String argument specifies the string to wait for. The String argument may contain the
wildcard characters ? and *. The ? wildcard indicates that any single character may occupy
that string position. The * wildcard indicates that 0 (zero) or more characters may occupy that
string position.

QUIET Time

The optional QUIET clause causes execution to resume if an amount of time elapses without
character transmission, and the string is not received. The Time argument is a string in the
following format:

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

WINDOW WinHandle

The optional WINDOW clause directs DCS to wait for the string in a specific session window.
The WINDOW clause is composed of both the WINDOW keyword and the WinHandle argu-
ment.

The optional WinHandle argument is an integer and identifies a particular session window.

Comments

If the WINDOW clause is not included in the command, DCS will wait for the string in the
active session window.

The ERROR function returns TRUE if the QUIET time expires.

To wait until a host is in a ready state before sending data, see the special strings for use with
the SEND command.

Example

In this example:

WAIT STRING “login” QUIET “00:00:05”

the script waits for the string “login” to appear in the session window. After 5 seconds, the
wait string is canceled.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

556

WAIT UNTIL

WAIT UNTIL Time

The WAIT UNTIL command waits until the specified time of day.

Arguments

Time

The Time argument is a string in the following format (based on a 24-hour clock):

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

Example

In this example:

WAIT UNTIL “17:00:00”
CONNECT

DCs waits until 5:00 P.M. and then connects to the host computer.

3 C
om

m
ands

557

WHEN CANCEL

WHEN CANCEL CommandType

The WHEN CANCEL command cancels a specified WHEN command.

Arguments

CommandType

The optional CommandType argument consists of a command keyword and an optional
command index. It specifies which WHEN command to cancel. If it is not included, all WHEN
commands on the current level of execution are cancelled.

The CommandType argument is specified by one of the following keywords or clauses:

Keyword Clause Action

ADVISE Index Directs DCS to cancel one or more (DDE) WHEN ADVISE
commands. The optional Index argument is an integer specify-
ing which (DDE) WHEN ADVISE command to cancel. If it is not
included, all (DDE) WHEN ADVISE commands on all levels of
execution are cancelled.

COLLECT Index Directs DCS to cancel one or more WHEN COLLECT commands.
The optional Index argument is an integer specifying which
WHEN COLLECT command to cancel. If it is not included, all
WHEN COLLECT commands are cancelled.

DISCONNECT Directs DCS to cancel the active WHEN DISCONNECT com-
mand.

ECHO Directs DCS to cancel the active WHEN ECHO command.

ERROR Level The ERROR clause directs DCS to cancel one or more WHEN
ERROR commands. The optional Levelargument is an integer
specifying which WHEN ERROR command to cancel. If it is not
included, all WHEN ERROR commands on all levels of execution
are cancelled.

INITIATE Directs DCS to cancel the active (DDE) WHEN INITIATE com-
mand.

INPUT Directs DCS to cancel the active WHEN INPUT command.

POKE Index Directs DCS to cancel one or more (DDE) WHEN POKE com-
mands. The optional Index argument is an integer (from 0 to 15)
specifying which (DDE) WHEN POKE command to cancel. If it is
not included, all (DDE) WHEN POKE commands on all levels of
execution are cancelled.

QUIET Directs DCS to cancel the active WHEN QUIET command.

REQUEST Index Directs DCS to cancel one or more (DDE) WHEN REQUEST
commands. The optional Index argument is an integer specifying
which (DDE) WHEN REQUEST command to cancel. If it is not
included, all (DDE) WHEN REQUEST commands on all levels of
execution are cancelled.

SCREEN Index Directs DCS to cancel one or more WHEN SCREEN commands.
The optional Index argument is an integer specifying which
WHEN SCREEN command to cancel. If it is not included, all
WHEN SCREEN commands on all levels of execution are can-
celled.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

558

STRING Index Directs DCS to cancel one or more WHEN STRING commands.
The optional Index argument is an integer specifying which
WHEN STRING command to cancel. If it is not included, all
WHEN STRING commands on all levels of execution are can-
celled.

TERMINATE Directs DCS to cancel the active (DDE) WHEN TERMINATE com-
mand.

TIMER Directs DCS to cancel the active WHEN TIMER command.

WINDOW Directs DCS to cancel the active WHEN WINDOW command.

Example

See the (DDE) WHEN ADVISE command.

WHEN CANCEL, continued

Keyword Clause Action

3 C
om

m
ands

559

WHEN COLLECT

WHEN COLLECT Index OnStr OffStr FromStr ToStr WaitExclude Quiet limit SAVECR
NOTTERMINAL WINDOW WinHandle

The WHENCOLLECT command directs DCS to return a maximum of 254 incoming characters from
a session window into a string variable until DCS receives one of the stop collecting conditions.

Arguments

Index

The Index argument is an integer (from 0 to 63) and is the identifier for the WHENCOLLECT
command. This argument allows DCS to have a maximum of 64 WHENCOLLECT commands
active at the same time. A WHENCOLLECT command replaces any previous WHENCOL-
LECT command that has the same Index argument.

OnStr

The pOnStr string argument directs DCS to start collecting characters when the text in the
pOnStr received. The collected data does not include the pOnStr text. Set to a null string if
not used.

OffStr

The pOffStr string argument directs DCS to stop collecting characters when the text in the
pOffStr is received. The collected data does not include the pOffStr text. Set to a null string if
not used.

FromStr

The pFromStr string argument directs DCS to start collecting characters when the text in the
pFromStr is received. The collected data includes the pFromStr text. Set to a null string if not
used.

ToStr

The pToStr string argument directs DCS to stop collecting characters when the text in the
pToStr is received. The collected data includes the pToStr text. Set to a null string if not used.

ExcludeStr

The pExcludeStr string directs DCS to exclude any characters contained in the pExcludeStr
argument from the characters it collects. DCS continues to collect and exclude characters until
it encounters the pOffStr or pToStr argument text or the nQuiet time is reached. Set to a null
string if not used.

Limit

The nLimit integer argument directs DCS to stop collecting characters after it has received a
number of characters equal to the integer in the nLimit argument. The nLimit , nQuiet, pOffStr
and pToStr arguments can work together (DCS stops collecting characters when any condition
is met). Set to a minus one (-1) if not used.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

560

Quiet

The nQuiet integer argument directs DCS to stop collecting characters after no characters are
received for the nQuiet number of seconds. The nQuiet , pOffStr and pToStr arguments can
work together (DCS stops collecting characters when any condition is met). Set to a minus
one (-1) if not used.

SAVECR

The bSAVECR argument directs DCS to store carriage returns in the collection string based
on the Boolean value of the bSAVECR argument. If bSAVECR is TRUE, DCS saves received
carriage returns. If bSAVECR is FALSE, DCS does not save received carriage returns.

NOTERMINAL

The bNOTTERMINAL argument if set TRUE, directs DCS not to pass the collected characters
to the terminal emulation for processing. As the characters are not passed to the terminal emu-
lation, they are also not displayed in the session window. If set FALSE, the collected characters
are passes to the terminal emulation for processing.

Note: The bNOTTERMINAL set TRUE should be used only in cases where the input to
the COLLECT command is known. Otherwise, important terminal commands
might be lost.

WinHandle

This integer argument identifies a particular session window in DCS. If the lWindowHandle
argument is 0 (zero), DCS uses the active session window.

Comments

This command returns 0 (zero) if successful and 1 (one) if an error occurs.

When DCS triggers the WhenCollect event it passes the collected string to the corresponding
void WhenCollect(short nIndex, boolean bTimeout, BSTR pCollectBuffer, long lWindow-
Handle) subroutine for processing.

WHEN COLLECT, continued

3 C
om

m
ands

561

WHEN DISCONNECT

WHEN DISCONNECT WINDOW WinHandle Command

The WHEN DISCONNECT command activates when DCS is in a wait state and when the communi-
cations connection of a session is terminated.

Arguments

WINDOW WinHandle

The optional WINDOW clause directs DCS to check the connection for a specific session win-
dow. The WINDOW clause is composed of both the WINDOW keyword and the WinHandle
argument.

The optional WinHandle argument is an integer and identifies a particular session window.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN DISCONNECT command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS will check the connection for
the active session window.

DCS is in a wait state after DCS has executed a WAIT command and before the condition of
the WAIT command is fulfilled.

Example

In this example:

WHEN DISCONNECT
BEGIN
DIALOG
MESSAGE “Connection terminated”
BUTTON DEFAULT “OK” RESUME
DIALOG END
WAIT RESUME
DIALOG CANCEL
QUIT
END

DCS displays the string “Connection terminated” in a dialog box upon disconnec-
tion.

In this example:

WHEN DISCONNECT
BEGIN
DISPLAY “Connection terminated”
END

the string “Connection terminated” displays in the session window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

562

WHEN ECHO

WHEN ECHO StringVar WINDOW WinHandle Command

The WHEN ECHO command activates when DCS is in a wait state and when DCS receives a charac-
ter through the communications port for the session window.

Arguments

StringVar

The StringVar argument specifies a string variable in which to store the received character.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer that identifies a particular session window.

The WINDOW clause directs DCS to watch for characters in a specific session window.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN ECHO command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS watches for characters in the
active session window.

DCS is in a wait state after DCS has executed a WAIT command and before the condition of
the WAIT command is fulfilled.

Example

In this example:

SET $char “”
WHEN ECHO $char
BEGIN
DISPLAY $char | “ received”
IF $char = “Z”
RESUME
END
WAIT RESUME

each character that comes in through the communications port is displayed in the session
window.

3 C
om

m
ands

563

WHEN ERROR

WHEN ERROR LevelNum Command

The WHEN ERROR command activates when DCD is in a wait state and encounters an execution
error during script execution.

Arguments

LevelNum

The LevelNum argument is an integer, from 0 (zero) through 3 (three), that specifies the
desired error level.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN ERROR command executes the logical command.

Comments

DCS is in a wait state after execution of a WAIT command and before the condition of the
WAIT command is fulfilled. The RESULT function returns information about the error which
activated the WHEN ERROR command.

Example

See the SET RESULT command and the TASKERROR command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

564

WHEN INPUT

WHEN INPUT StringVar WINDOW WinHandle Command

The WHEN INPUT command activates when DCS is in a wait state and when a character generated by
pressing a key combination is sent out of the communications port for the session window.

Arguments

StringVar

The StringVar argument specifies a string variable in which to store the outgoing character.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer that identifies a particular session window.

The WINDOW clause directs DCS to watch for the characters entered into a specific session
window.

Command

The Command argument specifies a logical command (either a single command or a com-
mand block). Activation of the WHEN INPUT command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS watches for the characters en-
tered into the active session window.

DCS is in a wait state after DCS has executed a WAIT command and before the condition of
the WAIT command is fulfilled. Interface options that emulate keyboard input (such as but-
tons on a session toolbar) also activate the WHEN INPUT command. When keyboard input
(real or emulated via the SEND command or a toolbar button) is sent out of the communica-
tions port, the WHEN INPUT command can be activated by each character sent. The character
sent is placed into the StringVar, and the logical command is performed.

3 C
om

m
ands

565

Example

In this example:

$name = “Tom”
;initializes name to “Tom”
$buffer = “ “
;initializes buffer to empty
WHEN INPUT $char \
;when a character is typed,
PERFORM check_char
;calls check_char
WAIT RESUME
CANCEL

*check_char
$buffer = $buffer | $char
;concatenates character to buffer
IF ($char = “^M”)
;checks for carriage return
BEGIN
IF (pos ($buffer, $name) > 0)
;beeps if “Tom” is found in a line
BEEP 1
$buffer = “ “
;re-initializes buffer
END
IF ($char = “^C”)
;stops buffering on [Ctrl]+[C]
RESUME
return

DCS calls the check_char routine for each character sent to the remote system. It con-
catenates the characters into a buffer, and when a carriage return is sent, scans the buffer for
the string “Tom”. If this string is found in the buffer, the computer beeps. If you press the
[CTRL]+[C] key combination, the script terminates.

WHEN INPUT, continued

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

566

WHEN QUIET

WHEN QUIET Time WINDOW WinHandle Command

The WHEN QUIET command activates when DCS is in a wait state and has not received a character
within the specified amount of time.

Arguments

Time

The Time argument is a string in the following format:

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer and identifies a particular session window.

The WINDOW clause directs DCS to watch for character transmission in a specific session
window.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN QUIET command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS watches for character transmis-
sion in the active session window.

DCS is in a wait state after execution of a WAIT command and before the condition of the
WAIT command is fulfilled.

Example

In this example:

WHEN QUIET “5”
SEND “hello”
WAIT STRING “Ready”
SEND “Good-bye”

after 5 (five) seconds pass without character transmission, DCS sends the string “hello”.

3 C
om

m
ands

567

WHEN SCREEN

WHEN SCREEN Index (Row, Col, Wid, Lns) WINDOW WinHandle Command

The WHEN SCREEN command activates when DCS is in a wait state, a region has been modified,
and the cursor moves out of the modified region.

Arguments

Index

The Index argument is a numeric (from 0 to 23) specifying the command identifier. It allows
multiple WHEN SCREEN commands to be active at the same time. A maximum of 24 WHEN
SCREEN commands may exist at one time.

(Row, Col, Wid, Lns)

The Row, Col, Wid, and Lns arguments are integers specifying the top line, left column,
column width, and optional number of lines, respectively, of the region of the terminal screen
to be monitored. The first row is considered row zero. The first column is considered column
0 (zero). If the Lns argument is not included, the specified screen region will be 1 (one) line
long.

WINDOW WinHandle

The WINDOW clause includes the WINDOW keyword and the WinHandle argument. The
WinHandle argument is an integer and identifies a particular session window.

The WINDOW clause directs DCS to watch the screen region in a session window specified by
the WinHandle argument.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN SCREEN command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS will watch the screen region of
the active session window.

DCS is in a wait state after execution of a WAIT command and before the condition of the
WAIT command is fulfilled.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

568

Example

In this example:

WHEN SCREEN 0 (23, 0, 5)
INCREMENT %cnt
%cnt = 0
WHILE (%cnt < 9)
BEGIN
WAIT DELAY “2”
DISPLAY (23, 0) str (%cnt)
Display (23, 20) “”
END

until the variable %cnt equals 9, DCS displays the number of times the screen region (located
at row 23, column 0 (zero), and 5 (five) characters wide) is modified.

Also see: (DDE) WHEN ADVISE command

WHEN SCREEN, continued

3 C
om

m
ands

569

WHEN STRING

WHEN STRING Index String WINDOW WinHandle Command

The WHEN STRING command activates when DCS is in a wait state and a string enters the commu-
nications port of a session window.

Note: The WHEN STRING command does not apply to the IBM TN3270 emulation.

Arguments

Index

The optional Index argument is an integer (from 0 to 63) and is the identifier for the WHEN
STRING command. This argument allows DCS to have a maximum of 64 WHEN STRING
commands active at the same time, and allows the WHEN CANCEL command to deactivate a
particular WHEN STRING command. A WHEN STRING command will replace any previous
WHEN STRING command that has the same Index argument.

If you do not include the Index argument in a WHEN STRING command, that WHEN
STRING command will replace all previously defined WHEN STRING commands in a script.

String

The String argument specifies a string.

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer and identifies a particular session window.

The WINDOW clause directs DCS to watch for the string in the session window specified by
the WinHandle argument.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN STRING command executes the logical command.

Comments

If the WINDOW clause is not included in the command, DCS will watch for the string in the
active session window.

DCS is in a wait state after DCS has executed a WAIT command and before the condition of
the WAIT command is fulfilled.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

570

Example

This example:

CONNECT
WAIT STRING “Enter password”
SEND “password”
WHEN STRING “Invalid password” CANCEL
WAIT STRING “Select topic:”

demonstrates a simple login procedure. DCS connects to the host and waits to receive the
string “Enter password”. DCS sends the password, and prepares to handle two possible
responses. If the remote system indicates that the password is invalid, DCS stops execution.
Otherwise, DCS resumes execution after receiving the string Select topic:.

This example:

DIAL “5551234”
WAIT STRING “Enter password”
SEND “password”
WHEN STRING “Invalid password” CANCEL
WAIT STRING “Select topic:”

demonstrates a simple login procedure. DCS dials the specified number and waits to receive
the string “Enter password”. DCS sends the password, and prepares to handle two pos-
sible responses. If the remote system indicates that the password is invalid, DCS stops execu-
tion. Otherwise, DCS resumes execution after receiving the string “Select topic:”.

WHEN STRING, continued

3 C
om

m
ands

571

WHEN TIMER

WHEN TIMER Time Command

The WHEN TIMER command activates when DCS is in a wait state and after the specified amount of
time has elapsed.

Arguments

Time

The Time argument is a string in the following format:

Hours:Minutes:Seconds

Hours and minutes are optional, but if hours are specified, minutes must also be specified.

Command

The Command argument specifies a logical command (either a single command or a command
block). Activation of the WHEN TIMER command executes the logical command.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

572

WHEN WINDOW

WHEN WINDOW WinHandleVar Message WParam LParam

The WHEN WINDOW command filters out a limited subset of Windows messages to the child win-
dows and acts upon them. This command allows for a high level of control over DCS child windows.
DCS must be in a wait state before a Windows message can activate this command.

Note: The WHEN WINDOW command does not apply to IBM TN 3270 emulations.

Arguments

WinHandleVar

The WinHandleVar argument is a numeric variable that stores the handle to a particular win-
dow.

Message

The Message argument is a low level message which depends on actions that have occurred in
Windows.

WParam

The WParam argument is a numeric containing information that is dependent on the particu-
lar window message.

LParam

The LParam argument is a numeric containing information that is dependent on the particu-
lar window message.

Comments

The WParam and LParam variables are assigned a value upon execution. Refer to the
Microsoft Windows Software Development Kit (SDK) for further information about window
messages and their corresponding parameters.

DCS is in a wait state after execution of a WAIT command and before the condition of the
WAIT command is fulfilled.

Example

See the WINDOW DEFAULT command.

3 C
om

m
ands

573

WHILE

WHILE Boolean Command

The WHILE command defines the start of a WHILE loop that includes a Boolean argument and a
command. If the Boolean argument evaluates to TRUE, DCS executes the command. The Boolean
argument is evaluated repeatedly and the command is executed repeatedly until the Boolean argument
is FALSE or until DCS executes a LEAVE or CONTINUE command.

Arguments

Boolean

The Boolean argument specifies the Boolean to be evaluated.

Command

The Command argument specifies a logical command (either a single command or a com-
mand block).

Comments

If the Boolean argument is initially FALSE, DCS skips the command, and execution contin-
ues on the line following the command. The Boolean argument is evaluated before the com-
mand is executed for the first time.

Examples

In this example:

SET %ndx 0
WHILE %ndx < 10
BEGIN
DISPLAY (%ndx, 0) STR (%ndx),
INCREMENT %ndx
END

DCS displays %ndx (converted to a string) repeatedly, until the value of %ndx equals 10
(ten).

The WHILE command in this example:

WHEN INITIATE PERFORM dde initiate
WHEN POKE 0 TABLE 0 “item0”
PERFORM poke0
WHEN TERMINATE
DISPLAY “DDE ended”
WHILE TRUE
WAIT SIGNAL

establishes an endless loop. After each DDE request is processed, the WHILE TRUE command
causes script execution to wait at the (DDE) WAIT SIGNAL command, ready to process the
next DDE request, until receipt of a Terminate message.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

574

WINDOW ACTIVATE

WINDOW ACTIVATE WinHandle Boolean

The WINDOW ACTIVATE command makes a particular window the active window.

Arguments

WinHandle

The WinHandle argument is a numeric expression that contains the handle of a particular
window.

Boolean

The optional Boolean expression determines whether the window with handle Window will
be brought into focus. If the value is TRUE (the default), the window is made the active win-
dow. If the value is FALSE, the specified window does not become the active window.

3 C
om

m
ands

575

WINDOW ARRANGE

WINDOW ARRANGE

The WINDOW ARRANGE command tiles all open document windows so that they can be viewed at
the same time.

Arguments

The WINDOW ARRANGE command takes no arguments.

Comments

Executing the WINDOW ARRANGE command is equivalent to selecting Tile on the Window
menu. The document windows are arranged to allow for maximum size.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

576

WINDOW CLOSE

WINDOW CLOSE WinHandle

The WINDOW CLOSE command closes a specified window and prompts you to save any changes you
have made.

Arguments

WinHandle

The WinHandle argument is an integer expression specifying the handle of a particular win-
dow.

Comments

When using WINDOW CLOSE after a WAIT ECHO, WHEN ECHO, or WAIT PROMPT
command, insert a WAIT DELAY command with a value of 1 (one) or 2 (two) following the
WINDOW CLOSE command.

Example

This example:

WINDOW OPEN MEMO “” (0,0,317,245) %WIN1
WINDOW OPEN SCRIPT “Report” (316,0,317,245) True %WIN2
WINDOW OPEN SETTINGS “” FALSE %WIN3
;opens a default session window
WINDOW MOVE %WIN3 (0,247,635,150)
WAIT RESUME
WINDOW CLOSE %WIN1
WINDOW CLOSE %WIN2
WINDOW CLOSE %WIN3

opens three windows: a new memo, the Report script, and a new session window. The
memo and script windows are positioned using arguments in the WINDOW OPEN command.
The session window is positioned with the WINDOW MOVE command.

3 C
om

m
ands

577

WINDOW DEFAULT

WINDOW DEFAULT WinHandle Message WParam LParam

The WINDOW DEFAULT command passes a message to the default handler for a window defined by
the handle WinHandle. Use this command with the WHEN WINDOW command to process any win-
dow messages which your script does not process.

Arguments

WinHandle

The WinHandle argument is an integer variable that stores the handle of a particular window.

Message

The Message argument is a low level message which depends on actions that have occurred in
Windows.

WParam

The WParam argument is a numeric containing information that is dependent on the particu-
lar window message.

LParam

The LParam argument is a numeric containing information that is dependent on the particu-
lar window message.

Comments

Refer to the Microsoft Windows Software Development Kit (SDK) for further information
about window messages and their corresponding parameters.

Example

In this example:

WHEN WINDOW %hWnd %msg %wParam %lParam
BEGIN
WINDOW DEFAULT %hWnd %msg %wParam %lParam
IF ((%hWnd = %memoHnd) and (%msg = 0x0002))
PERFORM message_script
END

the WHEN WINDOW command intercepts messages for the window whose window handle is
%hwnd. When a window message is interrupted by WHEN WINDOW, the message is placed
in %msg. When the window message is received, the WINDOW DEFAULT command passes
the window message contained in %msg to the window, and the IF command is executed.
The Windows message 0x0002 specifies to destroy the memo window associated with
%memoHnd.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

578

WINDOW HIDE

WINDOW HIDE WinHandle

The WINDOW HIDE command hides the application window, or a child window, from view. This
command is similar to using the SCREEN command with the HIDE keyword (which will hide the
session window); however, the WINDOW HIDE command can hide the dcs application window or any
of its child windows.

Arguments

WinHandle

The optional WinHandle argument is an integer and identifies a particular child window. The
dcs application window has the handle number zero.

Comments

If you do not include the WinHandle argument, the command affects the active window.

If a script terminates while the DCS application window is hidden, DCS disappears from
view, but still resides in memory. When DCS is in this state, it can be accessed only through
another application using Dynamic Data Exchange (DDE). Without DDE, Windows regains
the memory that it allocated to DCS only after you restart Windows.

3 C
om

m
ands

579

WINDOW MAXIMIZE

WINDOW MAXIMIZE WinHandle

The WINDOW MAXIMIZE command enlarges the DCS window to fill the entire screen or enlarges one
of the DCS child windows to fill the application window.

Arguments

WinHandle

The optional WinHandle argument is a numeric expression that evaluates to the handle of a
particular window. Use the number 0 (zero) to specify the DCS application window.

Comments

If no window handle is specified, the command affects the active window.

Executing the WINDOW MAXIMIZE command is equivalent to selecting Maximize on the
DCS control menu or a DCS child-window control menu.

Example

This example:

WINDOW MAXIMIZE %win

maximizes the window specified by the window handle in the %win variable.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

580

WINDOW MESSAGE

WINDOW MESSAGE WinHandle Message WParam LParam

The WINDOW MESSAGE command sends a message to the window with the handle WinHandle.

Arguments

WinHandle

The WinHandle argument is a numeric expression that evaluates to the handle of a particular
window.

Message

The Message argument is a low level message which dependents on actions that have occurred
in Windows.

WParam

The WParam argument is an integer containing information that is dependent on the particu-
lar window message.

LParam

The LParam argument is an integer containing information that is dependent on the particular
window message.

Comments

Refer to the Microsoft Windows Software Development Kit (SDK) for further information
about window messages and their corresponding parameters.

Example

In this example:

WINDOW MESSAGE %dcHnd 0x0111 0xE12A 0
;select all
WAIT DELAY ‘1’
WINDOW MESSAGE %dcHnd 0x0111 0xE122 0
;copy

all text in the window %dcHnd is seleced and copied to the clipboard.

The message parameter 0x0111 corresponds to the WM_COMMAND Windows message
(see the Windows Software Development Kit for details). WM_COMMAND is sent to a
window when a menu item is chosen or a button is pressed. In this example, the WINDOW
MESSAGE commands simulate selecting Select All (0xE12A)and Copy (0xE122) on the
Edit menu.

3 C
om

m
ands

581

WINDOW MINIMIZE

WINDOW MINIMIZE WinHandle

The WINDOW MINIMIZE command iconizes the given window, or causes DCS to run while appearing
on the screen as an icon.

Arguments

WinHandle

The optional WinHandle argument is a numeric expression that evaluates to the handle of a
particular window. Use the number 0 (zero) to specify the DCS application window.

Comments

Executing the WINDOW MINIMIZE command is equivalent to selecting Minimize on the DCS
control menu.

If the window handle is not included, the command is applied to the active window.

Example

This example:

WINDOW MINIMIZE %win

will minimize the window specified by the window handle in the %win variable.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

582

WINDOW MOVE

WINDOW MOVE WinHandle (x, y, w, h)

The WINDOW MOVE command moves and sizes a window.

Arguments

WinHandle

The optional WinHandle argument is a numeric expression that contains the handle to a
particular window. The default is the DCS application window.

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the desired position and size of the win-
dow. It indicates the top left corner (x, y), width (w), and height (h). If the coordinate set is
included, one to four coordinates can be specified (for example, (,,40,) to specify width only).
If it is not included, a default size and placement is assigned.

The coordinates of child windows are relative to the position of the application window.

Examples

See the WINDOW CLOSE command.

3 C
om

m
ands

583

WINDOW OPEN Type FileName (x, y, w, h) Boolean WinHandle

The WINDOW OPEN command opens a new empty window or a window with an existing file.

Arguments

Type

The optional Type argument is specified by one of the following keywords:
SETTINGS SCRIPT MEMO

 The default window type is MEMO.

FileName

The FileName argument is a string specifying the file name to be opened. If a null string (“”) is
used, a new window opens.

(x, y, w, h)

The optional coordinate set (x, y, w, h) specifies the desired position and size of the win-
dow. It indicates the top left corner (x, y), width (w), and height (h). If the coordinate set is
included, one to four coordinates can be specified (for example, (,,40,) to specify width only).

If this argument is not included, a default size and placement is assigned. The coordinates of
the child windows are relative to the position of the application window.

Boolean

The optional Boolean argument is used to set a window in read-only or read/write mode. A
TRUE state sets read-only. The default state is FALSE.

WinHandle

The optional WinHandle argument is a numeric which contains the handle to the window of
the file described by the FileName argument.

If this argument is included but the file cannot be opened, 0 (zero) is returned. If the file does
not exist or if an incorrect path is given for the file, the file cannot be opened.

Comments

If the maximum number of windows are open, another window is not opened. If you have
included the WinHandle argument in the command, a 0 (zero) is placed in the argument.

The maximum number of open windows is limited only by the specific limitations of your
computer, including the amount of available memory, number of communication ports, etc.

WINDOW OPEN

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

584

Example

This example:

WINDOW OPEN MEMO “” (0,0,317,245) %WIN1
WINDOW OPEN SCRIPT “” (316,0,317,245) TRUE %WIN2
WINDOW OPEN SETTINGS “” FALSE %WIN3
WINDOW MOVE %WIN3 (0,247,635,150)
WAIT RESUME
WINDOW CLOSE %WIN1
WINDOW CLOSE %WIN2
WINDOW CLOSE %WIN3

opens three windows: a new memo, a new script, and a new session window. The memo and
script windows are positioned using arguments in the WINDOW OPEN command. The session
window is positioned with the WINDOW MOVE command.

WINDOW OPEN, continued

3 C
om

m
ands

585

WINDOW RESTORE

WINDOW RESTORE WinHandle

The WINDOW RESTORE command restores the DCS application window size and placement prior
to execution of a WINDOW MAXIMIZE or WINDOW MINIMIZE command.

Arguments

WinHandle

The optional Window argument is a numeric that evaluates to the handle of a particular
window.

Comments

Executing the WINDOW RESTORE command is equivalent to selecting Restore on the DCS
control menu or a child window control menu.

If the window handle is not included, the command is applied to the active window.

Example

In this example:

WINDOW OPEN MEMO “” (0,0,317,245) %WIN1
WINDOW MINIMIZE %WIN1
WINDOW RESTORE %WIN1

the memo window specified by the variable %WIN1 is opened in the upper left corner of the
screen. This window is minimized, then restored to its previous size.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

586

WINDOW STACK

WINDOW STACK

The WINDOW STACK command positions all open windows in the DCS application window such
that the top left corner of each window is accessible.

Arguments

The WINDOW STACK command takes no arguments.

Comments

Executing the WINDOW STACK command is equivalent to selecting Cascade on the Window
menu.

The windows are stacked from top to bottom without changing their current order.

3 C
om

m
ands

587

WINDOW UNHIDE

WINDOW UNHIDE WinHandle

The WINDOW UNHIDE command displays the application window or a child window that the WIN-
DOW HIDE command has hidden. The window appears with the same size and position properties
prior to execution of the WINDOW HIDE command.

Arguments

WinHandle

The optional WinHandle argument is an integer that identifies a particular child window to be
restored. The default window is the DCS application window.

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

588

XFERCONFIG

XFERCONFIG String WINDOW WinHandle

The XFERCONFIG command is used to set the value of a parameter used in the file transfer protocol
configuration for the active session.

Arguments

String

The String argument represents a single keyword followed by the assignment operator (=) and
a valid setting. Together, the keyword and the setting are used to configure the file transfer
protocol for the active session.

Note: Configuration keywords for transfer protocols shipped with client options, such
as IXF and IND$File, are valid only if the client option has been installed.

Keywords for KERMIT Valid Setting(s)

Kermit_TimeConstraintsType standard, loose

Kermit_ErrorCheckType 1bytechecksum, 2bytechecksum, 3bytecrc

Kermit_FileType binary, text

Kermit_FileExist prompt, skip, overwrite

Kermit_WindowChoice 1 (true), 0 (false)

Kermit_PacketChoice 1 (true), 0 (false)

Kermit_WindowSize integer (1-31)

Kermit_PacketSize integer (80-9024)

Kermit_ChangeFileName 1 (true), 0 (false)

Kermit_AutoHostActivation 1 (true), 0 (false)

Kermit_KermitCommand command string

Kermit_KermitServerCommand command string

Kermit_BinaryXferCommand command string

Kermit_TextXferCommand command string

Kermit_SendPktLenCommand command string

Kermit_RcvPktLenCommand command string

Kermit_WindowSizeCommand command string

Kermit_ExitKermitCommand command string

FT_ENABLETIMEOUT 1 (true), 0 (false)

FT_TIMEOUTVALUE 0-9999

FT_DISABLESTATUSSTOP 1 (true), 0 (false)

3 C
om

m
ands

589

XFERCONFIG, continued

Keywords for XYMODEM Valid Setting(s)

XYOPTION xmodem, ymodem, ymodemg

XYFILETYPE binary, ascii

XYFILEEXIST prompt, overwrite, resume

XYBLOCKSIZE 128, 1k

XYERRORCHECK checksum, crc16

XYMAXIMUMRETRIES Integer

XMODEM_AUTOHOSTACTIVATION 1 (true), 0 (false)

XMODEM_RCVCOMMAND string

XMODEM_SENDCOMMAND string

YMODEM_AUTOHOSTACTIVATION 1 (true), 0 (false)

YMODEM_RCVCOMMAND string

YMODEM_SENDCOMMAND String

FT_ENABLETIMEOUT 1 (true), 0 (false)

FT_TIMEOUTVALUE 0-9999

FT_DISABLESTATUSSTOP 1 (true), 0 (false)

Keywords for ZMODEM Valid Setting(s)

ZERRORCHECK crc16, crc32, auto

ZFILETYPE binary, ascii

ZFILEEXIST prompt, resume, skip, overwrite

ZAUTOSTART 1 (true), 0 (false)

ZBLOCKSIZE 128, 256, 512, 1K, auto

ZMAXIMUMRETRIES integer

ZCONSECUTIVERETRIES integer

ZMODEM_AUTOHOSTACTIVATION 1 (true), 0 (false)

ZMODEM_RCVCOMMAND string

ZMODEM_SENDCOMMAND string

ZMODEM_ESCCTRLCHAR 1 (true), 0 (false)

ZMODEM_CHANGEFILENAME 1 (true), 0 (false)

FT_ENABLETIMEOUT 1 (true), 0 (false)

FT_TIMEOUTVALUE 0-9999

FT_DISABLESTATUSSTOP 1 (true), 0 (false)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

590

If the IBM TN3270 Client Option has been installed, the following keywords are available:

Keywords for IND$File Valid Setting(s)

IND3270_HostEnvironment CMS, TSO, CICS

IND3270_ChkBlockSize 1 (true), 0 (false)

IND3270_BlockSize 1 to 6233

IND3270_ChkRecLength* 1 (true), 0 (false)

IND3270_RecLength* 1 to 32760

IND3270_RecFormat Default, Fixed, Variable, Undefined

IND3270_Append 1 (true), 0 (false)

IND3270_ConvertASCII 1 (true), 0 (false)

IND3270_ConvertCRLF 1 (true), 0 (false)

IND3270_ChkSpace** 1 (true), 0 (false)

IND3270_SpacePrimary** 0 to 99999

IND3270_SpaceSecondary** 0 to 99999

IND3270_SpaceUnits** Blocks, Tracks, Cylinders

IND3270_Program_Name String. The string should be the name of the host
program that transfers files between the host and
DCS, usually IND$File.

IND3270_PaceketSize 256 to 32767

IND3270_PC_CodePage ISO Latin-1 (Windows NSI), English-US, Canadian
French

IND3270_Host_CodePage English-US, Canadian French

IND3270_Extra_Options Parameters that your host requires for which neither
the Session or Advanced tabs provide settings.

FT_ENABLETIMEOUT 1 (true), 0 (false)

FT_TIMEOUTVALUE 0-9999

FT_DISABLESTATUSSTOP 1 (true), 0 (false)

* Applicable only to CMS and TSO environments.

** Applicable only to TSO environments.

XFERCONFIG, continued

3 C
om

m
ands

591

XFERCONFIG, continued

If the Tandem 6530 Client Option is installed, the following keywords are available:

Keywords for IXF Valid Setting(s)

IXF_HOSTPROGRAM string (48 character limit)

IXF_MAXRETRIES positive integer (5 digit limit)

IXF_DEFAULTVOL volume/subvolume name

IXF_RECORDSIZE positive integer (1 – 4096)

IXF_SHARE 1 (true), 0 (false)

IXF_PACKETDEPTH 1 – 16

IXF_BINARY true (Binary transfer), false (Text transfer)

IXF_FILECODE 0 – 65535 (may not be 101 for binary transfer)

IXF_EDITINCREMENT 0.001 – 2000.999

IXF_ENABLEPRINTER 1 (true), 0 (false)

IXF_STRIPHIGHBIT 1 (true), 0 (false)

IXF_SKIPPERFS 1 (true), 0 (false)

IXF_MAKEEXTENSION 1 (true), 0 (false)

IXF_NUMEXTENSIONCHARS 1 – 3

IXF_CRLF 1 (true), 0 (false)

IXF_KEEPHOSTFILEDATE 1 (true), 0 (false)

IXF_RCVFILEEXISTOPTION ReceiveAbort, ReceivePrompt, ReceiveOverwrite,
ReceiveAppend

IXF_NOEXTENSIONS 1 (true), 0 (false)

IXF_OWNER 1 (true), 0 (false)

IXF_GROUP 0 – 255

IXF_USER 0 – 255

IXF_FILESECURITY four character string, using A, N, G, O, C, U, S (may
also be -), or D

IXF_PRIMARYHOSTEXT 1 – 65535

IXF_SECONDARYHOSTEXT 1 – 65535

IXF_KEEPPCFILEDATE 1 (true), 0 (false)

IXF_SENDFILEEXISTOPTION SendAbort, SendPurge, SendErase, SendAppend

IXF_TABOPTION DeleteTabs, TabsToSpaces, TabList

IXF_TABSEVERY positive integer (1 – 4096)

IXF_TABLIST comma-delimited list of up to 128 Tab Stops in range
1 – 4096

FT_ENABLETIMEOUT 1 (true), 0 (false)

FT_TIMEOUTVALUE 0-9999

FT_DISABLESTATUSSTOP 1 (true), 0 (false)

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

592

WINDOW WinHandle

The optional WINDOW clause includes the WINDOW keyword and the WinHandle argument.
The WinHandle argument is an integer identifying a particular child window.

The WINDOW clause applies the file transfer configuration settings to a particular session
window.

Comments

The keywords correspond to parameters available on the File Transfers tab of the Session
Properties dialog. This command, therefore, allows you to set these parameters through the
DCS Script Language rather than using the dialog box.

The ERROR function returns TRUE if the WinHandle or String keyword is invalid.

If WinHandle is not specified, the file transfer protocol configuration settings are applied to
the active session window.

Example

In this example:

XFERCONFIG “BlockSize=256”

the block size for the transfer is set to 256 bytes.

XFERCONFIG, continued

A
Task Errors

DCS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

594

When an error occurs during script execution, DCS displays a four digit number in an error dialog. Here’s
an example:

3411

First Digit

The first digit in the error number is the level at which the error occurred. The following table lists
all error levels with a short description of each:

Error Level Description

 0 Fatal

 1 Critical

 2 Warning

 3 Run Time

Remaining Digits

The three digits following the error level indicate the actual error number. The following table lists
all three digit error numbers with a short description of each.

Also see: TASKERROR command

Task Errors

595

A Task Errors

101 Occurs if a memory allocation or a memory lock fails.

111 Occurs when an attempt is made to assign a value to a variable and it fails.

112 Occurs when a RECORD FORMAT command is executed with illegal row/
column parameters, or a memory allocation in which to store the information
fails.

113 Occurs when trying to add a dialog control and it cannot add the new control
information to the master dialog control structure. This is due to a memory
shortage.

114 Occurs if an unseccessful attempt to save a keymap filehas been made.

115 The keyname parameter resolves to an integer less than zero or greater
than 255 when using the KEY command.

201 Occurs when trying to execute a FILE command and the source file does
not exist.

202 Occurs when using a FILE RENAME command and the destination file
already exists.

211 Occurs if an unsuccessful attempt to launch another application has been
made.

301 No terminal window is open when using the following commands: DIAL,
BREAK, DROPDTR, FILE SEND..., FILE RECEIVE..., SENDBREAK, SET-
TINGS, SAVE, and any SCREEN... command (except SCREEN HIDE).

321 The text specified by the EDIT FIND or EDIT REPLACE commands is not
found.

331 The window specified by the WINDOW OPEN command was not opened for
any reason.

341 The SET ATTRIBUTES command fails to set the specified attributes.

351 When using the FILE OPENNAME or FILE CREATENAME commands and
the user cancels the dialog without choosing a file name.

361 Occurs when using the LIBRARY LOAD command and the maximum num-
ber DLLs the script may load has been exceeded, or if the command returns
an error value.

362 Occurs when using the LIBRARY CALL command and GetProcAddress
cannot resolve the entry point of the specified DLL function or GlobalReAl-
loc fails in allocating space to pass parameters from a table.

363 Occurs when using the LIBRARY UNLOAD command returns an error
value.

401 Occurs when trying to decode the next command and it is not a valid com-
mand.

402 Occurs if a valid command is followed by an option that the command does
not use.

403 Unused; ignore if displayed.

404 Occurs if trying to use TRANSFER OBJECT and the application is not run-
ning under NewWave.

408 Occurs if an attempt is made to divide by zero in the expression.

Task Errors, continued

Error # Cause of the Error

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

596

411 Occurs when an integer variable is needed but not present, or when variable
is present but the wrong type.

 Cases: FILE OPENNAME or FILE CREATENAME

 WAIT COLLECT

 WHEN INPUT

 WHEN ECHO

 (DDE) ACCESS (with the optional DDEList)

 (DDE) WHEN REQUEST

 WHEN EXECUTE

 CONCAT (obsolete, no longer documented, but kept for back-
wards compatibility)

 PARSE

412 Occurs when an integer variable is needed but not present, or when variable
is present but the wrong type.

 Cases: LIBRARY LOAD library handle (LibraryName)

 WINDOW OPEN window handle (WinHandle)

 WHEN WINDOW any of the four variables (WinHandleVar, Mes-
sage, WinParam, LevelParam)

 (DDE) ACCESS channel variable (ChannelVar)

 (DDE) WHEN table number (TABLE Table)

 INCREMENT or DECREMENT variable (IntVar)

421 Occurs when a string expression is expected but not found.

422 Occurs when an integer expression is expected but not found.

423 Occurs when a Boolean expression is expected but not found.

424 Occurs when a branch can not be resolved.

 Cases: EXECUTE (a jump using a string denoted target name that has
the string missing)

 GOTO (same as EXECUTE)

 PERFORM (same as EXECUTE)

425 Occurs when it expects a valid time expression.

 Cases: WAIT DELAY

 WAIT UNTIL

 WAIT QUIET

 WAIT STRING

 WHEN TIMER

 WHEN QUIET

426 Occurs when expecting (x, y, width, height) and there is an error.

501 Occurs when trying to execute a WHEN xxxx Number. Where xxxx is
STRING, POKE, etc. and Number exceeds the maximum number of WHEN
commands for the particular case of xxxx.

Task Errors, continued

Error # Cause of the Error

597

A Task Errors

502 Occurs when trying to setup a WHEN SCREEN command and the user tries
to define an area that is not on the screen.

511 No longer used.

524 NetBios error.

525 Connection already made.

526 Already connected to host.

601 Occurs when trying to use a table that has not been defined or when creat-
ing a list box in a dialog that uses an undefined table in a DDE transaction

 Cases: TABLE SORT

602 Occurs when a table number less than zero or greater than MAXTABLE-
NUM-1

 Cases: Any TABLE command any RECORD command updating a dialog
list box using an undefined table in a DDE transaction using an
undefined table in a (DDE) WHEN command

603 Invalid field count.

604 A table to be sorted with the SORT command contains zero records.

605 Occurs when using the TABLE LOAD command and the source data fails to
load for any reason.

606 Occurs when using the TABLE SAVE command and the data fails to be writ-
ten to the destination specified for any reason

611 Occurs when trying to update a list box and an invalid record number is
given.

621 Occurs when using the TABLE COPY command and the source and desti-
nation tables are the same.

651 Occurs if you attempt to add popups or menu items without first executing
the MENU command.

661 Occurs if you try to add an item and there are no popups defined.

671 Occurs when trying to access undefined menu or item.

 Cases: Try to access an undefined system menu

 Try to access an undefined user menu

 Try to access an undefined item in the system menu

 Try to access an undefined item in a user menu

701 Try to create or update an item in a dialog without having executed the DIA-
LOG command.

702 Occurs if you try to have a total of more than 255 dialog controls.

711 Occurs if you try to define more than MAX_WHEN_BUTTONS buttons. This
includes buttons, wide buttons, and icon buttons.

712 Occurs if you try to define more than MAX_WHEN_GROUPS radio groups.

713 Occurs if you try to use a radio button without a radio group.

714 Occurs if you try to define more than MAX_WHEN_CHECKS check boxes.

715 Occurs if you try to define more than MAX_DLG_EDITS edit texts.

716 Occurs if you try to define more than MAX_WHEN_LISTS list boxes.

Task Errors, continued

Error # Cause of the Error

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

598

721 Occurs if you try to use a LIMIT qualifier in a (DIALOG) EDITTEXT com-
mand with a value greater than STR255-2 (256-2).

731 Occurs if you try to perform a DIALOG UPDATE on a nonexistent item.

732 Occurs when the specified ICON resource does not exist.

801-816 The WAIT errors occur when memory cannot be allocated in which to store
the WAIT information.

820-844 The WHENENABLE errors occur when memory cannot be allocated to store
the WHEN lookup information.

851-874 The WHENACTIVATE errors occur when memory cannot be allocated to
store the WHEN activation information.

901 Occurs if memory cannot be allocated to store information about the current
state of execution before a branch to a subroutine.

902 Occurs if a RETURN command cannot be executed correctly.

903 Occurs if PERFORM or EXECUTE fails.

904 Occurs if the system cannot halt the current level of operation. Most likely
to occur immediately before a branch when the system is trying to save or
flush data associated with the current level of operation.

921 Could not execute a WHEN ERROR branch. Could not execute a WHEN
branch.

931 Occurs if an encrypted string overflows the script string size limit of 254
bytes.

981 Occurs when using the (DDE) ACCESS command and the
WM_DDE_INITIATE message fails to initiate a DDE conversation.

982 Occurs when using the (DDE) TABLE REQUEST command and the DDE
server does not pass data back in CF_TEXT format.

983 Occurs when using the (DDE) TABLE POKE command and the target table
is not in the CF_TEXT format.

984 Occurs when using the (DDE) TABLE REPLY command and the replying
table is not in CF_TEXT format.

985 Occurs when a DDE command times out.

986 Occurs when the DDE POKE command fails.

991 Occurs if no DDE channels are currently open and a DDE transaction is
attempted. Also occurs if upon failure of a DDE command to allocate or lock
memory.

996 Occurs when the maximum number of WHEN ADVISE commands have
been exceeded and the task engine cannot reply to an advise transaction.

997 Occurs if another DDE transaction is received before the response to a prior
transaction has been acknowledged. Also occurs if the value to be decrypt-
ed is not a sting variable.

998 GlobalAlloc fails in allocating the global memory object to hold the string to
be passed to the server.

 If rudimentary sanity check of decrypted string fails or if incorrect password
used to decrypt the string.

 If the window handle passed to the WINDOW CLOSE or WINDOW SAVE
commands is not a DCS child window handle.

999 Error with NetBios. Most likely it is not loaded.

Task Errors, continued

Error # Cause of the Error

B
New and Removed
Commands and Functions

DCS

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

600

The following have been added to the DCS Script Language:

New Commands and Functions

—Commands—
APPCONFIG

CONNCONFIG

DISPLAYCONFIG

GENERALCONFIG

EMULCONFIG

KEYMAP LOAD

KEYMAP SAVE

LOGOTFILE

MENU DELETE ITEM

MENU DELETE POPUp

MENU INSERT ITEM

MENU INSERT POPUP

SCROLL DOWn

SCROLL LEFT

SCROLL RIGHT

SCROLL UP

SET AUTOSCROLLTOCURSOR

SET DEFAULTSESSIONHANDLE

SET DDETIMEOUT

SPAWN

TOOLBARHIDE

TOOLBARSHOW

XFERCONFIG

—Functions—
BUFFER

DEFAULTSESSIONHANDLE

DIALOGHANDLE

EXPLDATTR

FLDATTREXPOS

FLDNUM

FLDTEXT

GETAPPCONFIG

GETCONNCONFIG

GETDISPLAYCONFIG

GETEMULCONFIG

GETGENERALCONFIG

GETXFERCONFIG

MESSAGEBOX

SEARCHINRECT

TYPEDLIBRARYCALL

WNDFILE

B N
ew

 and R
em

oved C
om

m
andsand Functions

601

(DIALOG) WIDEBUTTON

FILE VIEW GIF

FILE VIEW RLE

FILE VIEW TEXT

KEYCODE

MERGE

RESET SERIAL

SET ANSWERBACK

SET AUTORESET

SET BLOCKSIZE

SET CONFIRMDISCONNECT

SET CONNECTOR

SET COUNTRY

SET CURSORBLINK

SET EMULATE

SET FKEYSARRANGE

SET FKEYSICONS

SET FKEYSONEROW

SET FOLDER

SET IBMTOANSI

SET INCOMINGCR

SET INCOMINGLF

SET INPUTMODE

SET LIMITWINDOWSIZE

SET LINEWRAP

SET MEMOTITLE

SET MODEM

SET MODEMTYPE

SET MONITORMODE

SYSTEM 0x801
(use MESSAGEBOX() function

SET NETWORK

SET NETWORK CARDNUM

SET NETWORK LINK

SET NETWORK LOCAL NAME

SET NETWORK LUNUM

SET NETWORK LUPUNAME

Removed Commands and Functions

The following have been removed from the DCS Script Language:

SET NETWORK RECEIVETIMEOUT

SET NETWORK REMOTENAME

SET NETWORK SENDTIMEOUT

SET PARITYCHECK

SET PINTER

SET RECORDFORMAT

SET RECORDLENGTH

SET SCROLLMARGINS

SET SPACE1

SET SPACE2

SET STOPALERT

SET TASKYIELD

SET TERMSCROLLBARS

SET TERMTITLE

SET TEXTTRANSFERS

SET TIMEOUT

SET TRANSLATION

SET TRUEATTRIBUTES

SET UNITS

TIMER

VIDEO LOAD

VIDEO RESET

VIDEO SAVE

VIDEO STYLE

VIDEO UPDATE

WAIT NETWORK

WAITFORCALL

WHEN LISTEN

WHEN RECEIVE

WINDOW ATTACHMENT

WINDOW SAVE

WINDOW SELECT

WINDOW SHOW

—Commands—

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

602

—Functions—
BUFFER ()

FOLDER ()

HWNDFILE ()

KEYBOARDSTATE ()

MODEMTYPE

SELECTION ()

SETTINGS (Country)

SETTINGS (Translation)

VIDEO ()

Removed Commands and Functions, continued

C
Quick Reference for
Command and Function Syntax

DCS

604

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

—A—

ACTIVE () ACTIVE ()

APPCONFIG APPCONFIG String

ARGUMENTS ARGUMENTS (Parameter, ...)

ATTRIBUTES () ATTRIBUTES (FileName)

—B—

BAND () BAND (Source, Mask)

BEEP* BEEP Num

BEGIN BEGIN

BNOT () BNOT (Numeric)

BOOL () BOOL (Integer)

BOR () BOR (Source, Mask)

BREAK* BREAK DelayUnits

BXOR () BXOR (Source, Mask)

—C—

CANCEL CANCEL

CHR () CHR (Numeric)

CLEAR CLEAR Screen WINDOW WinHandle

COLLECT* COLLECT UNTIL String1 EXCLUDE String2 String3 LIMIT Num
SAVECR SBoolean NOTERMINAL WINDOW WinHandle

COMPILE COMPILE Script Make Display

CONCAT CONCAT StringVar String String …

CONNCONFIG CONNCONFIG String WINDOW WinHandle

CONNECT () CONNECT ()

CONNECT CONNECT SessionFile WINDOW WinHandleVar

CONNECTMESSAGE ()* CONNECTMESSAGE ()

CONNECTRESULT ()* CONNECTRESULT (WinHandle)

CONTINUE CONTINUE

CREATE DIRECTORY* CREATE DIRECTORY Path

Syntax Quick Reference

All functions and commands available in the DCS Script Language are listed below with the required state-
ment syntax for each. Functions are followed by “()” characters.

Note: Commands or functions flagged with an asterisk do not apply to the IBM TN3270 emu-
lation.

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

605

CURSOR () CURSOR (WinHandle)

—D—

DATE () DATE (Seconds)

(DDE) ACCESS ACCESS Server Topic ChannelVar DDEList

(DDE) ACCESS CANCEL ACCESS CANCEL Channel

(DDE) ADVISE () ADVISE ()

(DDE) INSTRUCT INSTRUCT Channel Command, ...

(DDE) POKE POKE Data TO Channel Item

(DDE) REQUEST REQUEST DataVar FROM Channel Item

(DDE) TABLE REPLY TABLE REPLY StrucTableNum TO Channel Item

(DDE) TABLE REQUEST TABLE REQUEST StrucTableNum FROM Channel Item
AS Format

(DDE) TABLE SEND TABLE SEND StrucTableNum TO Channel Item AS
Format

(DDE) WAIT SIGNAL WAIT SIGNAL

(DDE) WHEN ADVISE WHEN ADVISE Index Channel Item Command

(DDE) WHEN EXECUTE WHEN EXECUTE Channel CommandVar Command

(DDE) WHEN INITIATE WHEN INITIATE ChannelVar Command

(DDE) WHEN POKE WHEN POKE Index TABLE Table Channel Item Command

(DDE) WHEN REQUEST WHEN REQUEST Index Channel Item Command

(DDE) WHEN TERMINATE WHEN TERMINATE Channel Command

DEBUG DEBUG FileName

DECREMENT DECREMENT IntVar

DECRYPT () DECRYPT (EncryptedString, Key)

DEFAULTSESSIONHANDLE () DEFAULTSESSIONHANDLE ()

DIAL* DIAL PhoneNum RETRY Retries DELAY RetryDelay

DIALOG DIALOG (x, y, w, h) Title SYSMENU SBoolean MODAL
MBoolean NOFOCUS FBoolean

(DIALOG) BUTTON BUTTON (x, y, w, h) Default Title Command

DIALOG CANCEL DIALOG CANCEL DialogIndex

(DIALOG) CHECKBOX () CHECKBOX (ControlNum, DialogIndex)

(DIALOG) CHECKBOX CHECKBOX (x, y, w, h) Default CheckBoxText Command

DIALOG CONTROL* DIALOG CONTROL DialogIndex Control ControlNum
Update

(DIALOG) DIMENSION DIMENSION Control Attribute Value

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

606

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

(DIALOG) EDITTEXT () EDITTEXT (ControlNum, DialogIndex)

(DIALOG) EDITTEXT EDITTEXT (x, y, w, h) Box Prompt Text LIMIT NumChars
PASSWORD

(DIALOG) GROUPBOX GROUPBOX (x, y, w, h) Message

(DIALOG) ICON ICON (x, y, w, h) IconId

(DIALOG) ICONBUTTON ICONBUTTON (x, y, w, h) IconId Default Title
Command

(DIALOG) LISTBOX () LISTBOX (ControlNum, DialogIndex)

(DIALOG) LISTBOX LISTBOX (x, y, w, h) Table Record INVERT COMBOBOX
Command

(DIALOG) MESSAGE MESSAGE (x, y, w, h) Text

(DIALOG) MESSAGEBOX () MESSAGEBOX (Message, Title, Style)

(DIALOG) NEWLINE NEWLINE

(DIALOG) PICTURE PICTURE (x, y, w, h) PictureId

(DIALOG) RADIOBUTTON RADIOBUTTON (x, y, w, h) ButtonName

(DIALOG) RADIOGROUP () RADIOGROUP (ControlNum, DialogIndex)

(DIALOG) RADIOGROUP RADIOGROUP (x, y, w, h) Default GroupName
Command

DIALOG UPDATE DIALOG UPDATE DialogIndex Control ControlNum
Update

DIALOGHANDLE () DIALOGHANDLE (Index)

DIRECTORY () DIRECTORY (Type)

DISCONNECT DISCONNECT WINDOW WinHandle

DISKSPACE () DISKSPACE (Drive)

DISPLAY DISPLAY (Row, Col) String CRONLY WINDOW
WinHandle

DISPLAYCONFIG DISPLAYCONFIG String WINDOW WinHandle

DROPDTR* DROPDTR DelayUnits

—E—

EDIT COPY EDIT COPY String WINDOW WinHandle

EDIT COPYSPECIAL* EDIT COPYSPECIAL Destination Format WINDOW
WinHandle

EDIT CUT EDIT CUT WINDOW WinHandle

EDIT FIND EDIT FIND String CASE REVERSE WINDOW WinHandle

EDIT GOTO EDIT GOTO Line WINDOW WinHandle

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

607

EDIT PASTE EDIT PASTE WINDOW WinHandle

EDIT REPLACE EDIT REPLACE String1 String2 CASE REVERSE
WINDOW WinHandle

EMULCONFIG EMULCONFIG String WINDOW WinHandle

ENCRYPT () ENCRYPT (OrigString, Key)

END END

EOF () EOF ()

ERROR () ERROR ()

EXECUTE EXECUTE Target

EXFLDATTR () EXFLDATTR (FieldNum, WinHandle)

EXISTS () EXISTS (FileName)

—F—

FILE CLOSE* FILE CLOSE WINDOW WinHandle

FILE COMPRESS FILE COMPRESS FileName

FILE COPY FILE COPY Source TO Destination APPEND

FILE CREATENAME FILE CREATENAME FileName TYPE Type DEFAULT
String TITLE TitleText NOCREATE

FILE DECOMPRESS FILE DECOMPRESS FileName

FILE DECRYPT FILE DECRYPT FileName Key

FILE DELETE FILE DELETE FileName

FILE ENCRYPT FILE ENCRYPT FileName Key

FILE OPENNAME FILE OPENNAME FileName TYPE Type DEFAULT String
TITLE TitleText

FILE PAUSE* FILE PAUSE

FILE RECEIVE BINARY FILE RECEIVE REMOTE BINARY FileName AS Dest
ASCII BINARY CRLF NOCRLF NEITHER APPEND
WINDOW WinHandle

FILE RENAME FILE RENAME Source TO Destination

FILE RESUME* FILE RESUME WINDOW WinHandle

FILE SEND BINARY FILE SEND REMOTE BINARY FileName AS Hostname
ASCII BINARY CRLF NOCRLF APPEND WINDOW
WinHandle

FILESIZE () FILESIZE (FileName)

FILTER () FILTER (String, SearchChars, ReplaceChars)

FKEYS FKEYS Display

FLDATTR () FLDATTR (Field, WinHandle)

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

608

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

FLDATTREXPOS () FLDATTREXPOS (Row, Column, WinHandle)

FLDLEN () FLDLEN (Field, WinHandle)

FLDNUM () FLDNUM (Row, Column, WinHandle)

FLDPOS () FLDPOS (Field, WinHandle)

—G—

GENERALCONFIG GENERALCONFIG String WINDOW WinHandle

GETAPPCONFIG () GETAPPCONFIG (KeyString)

GETCONNCONFIG () GETCONNCONFIG (KeyString, WinHandle)

GETDISPLAYCONFIG () GETDISPLAYCONFIG (KeyString, WinHandle)

GETEMULCONFIG () GETEMULCONFIG (KeyString, WinHandle)

GETGENERALCONFIG () GETGENERALCONFIG(KeyString, WinHandle)

GETPROFILEDATA () GETPROFILEDATA (Section, KeyName, INIFile)

GETXFERCONFIG () GETXFERCONFIG (KeyString, WinHandle)

GOTO GOTO Target

—H—

HANGUP* HANGUP WINDOW WinHandle

HWNDLIST () HWNDLIST (NumWin)

—I—

ICONIC () ICONIC (WinHandle)

IF IF Boolean Command ELSE Command

INCREMENT INCREMENT IntVar

INT () INT (RealNum)

—K—

KERMIT COPY* KERMIT COPY SourceFile TO DestinationFile WINDOW
WinHandle

KERMIT DIRECTORY* KERMIT DIRECTORY DirectoryName WINDOW
WinHandle

KERMIT ERASE* KERMIT ERASE FileName WINDOW WinHandle

KERMIT FINISH* KERMIT FINISH WINDOW WinHandle

KERMIT FREESPACE* KERMIT FREESPACE WINDOW WinHandle

KERMIT HELP* KERMIT HELP HelpTopic WINDOW WinHandle

KERMIT LOGOUT* KERMIT LOGOUT WINDOW WinHandle

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

609

KERMIT MESSAGE* KERMIT MESSAGE ReceiverName MessageText
WINDOW WinHandle

KERMIT NEWDIRECTORY* KERMIT NEWDIRECTORY DirectoryName WINDOW
WinHandle

KERMIT RENAME* KERMIT RENAME OldFileName TO NewFileName
WINDOW WinHandle

KERMIT TYPE* KERMIT TYPE FileName WINDOW WinHandle

KERMIT WHO* KERMIT WHO UserName WINDOW WinHandle

KEY KEY Modifier1 Key1 Definition WINDOW WinHandle

KEYBOARD KEYBOARD State WINDOW WinHandle

KEYMAP LOAD KEYMAP LOAD FileName

KEYMAP RESET KEYMAP RESET

KEYMAP SAVE KEYMAP SAVE FileName

—L—

LAUNCH LAUNCH Application Command, ... ContinueScript

LEAVE LEAVE

LENGTH () LENGTH (String)

LEVEL LEVEL KeyLevel

LIBRARY CALL LIBRARY CALL LibraryReference Procedure (Parameter,
…)

LIBRARY LOAD LIBRARY LOAD LibraryName LibraryReference

LIBRARY UNLOAD LIBRARY UNLOAD LibraryReference

LINENUMBERS LINENUMBERS

LOAD LOAD FileName

LOGTOFILE LOGTOFILE FileName WINDOW WinHandle

—M—

MENU MENU

MENU CANCEL MENU CANCEL

(MENU) CHECKED () CHECKED (Popup, Item)

(MENU) DELETE ITEM MENU DELETE ITEM IntPopup IntItem

(MENU) DELETE POPUP MENU DELETE POPUP IntPopup

(MENU) ENABLED () ENABLED (Popup, Item)

(MENU) INSERT ITEM MENU INSERT ITEM IntPopup IntItem StrText Enabled
Checked Command

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

610

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

(MENU) INSERT POPUP MENU INSERT POPUP IntPopup StrText

(MENU) ITEM ITEM Text Enabled Checked Command, ...

(MENU) POPUP POPUP Text SYSTEM Pos

(MENU) SEPARATOR SEPARATOR

MENU UPDATE MENU UPDATE Popup Item Text Enabled Checked

—N—

NETID ()* NETID ()

NEXT () NEXT ()

NOSHOW NOSHOW

NUM () NUM (String)

—O—

ORD () ORD (String)

—P—

PARSE PARSE String StringVar1 Keyword StringVar2

PASSWORD ()* PASSWORD ()

PERFORM PERFORM Target (Parameter, ...)

PHONENUMBER ()* PHONENUMBER ()

POS () POS (String, Keyword, Start)

POSITION () POSITION (WinHandle, Boolean)

POWER () POWER (Base, Exponent)

PRINT CANCEL PRINT CANCEL

PRINT CLOSE PRINT CLOSE

PRINT FILE PRINT FILE FileName LF

PRINT FONT PRINT FONT Font Point

PRINT NEWLINE PRINT NEWLINE

PRINT NEWPAGE PRINT NEWPAGE

PRINT OPEN PRINT OPEN PORT Port DRIVER Driver TYPE Type
ABORT

PRINT STRING PRINT STRING String

PRINT STYLE PRINT STYLE Attribute ...

PRINT TABS PRINT TABS Width

PRINT TERMINAL* PRINT TERMINAL State WINDOW WinHandle

PRTMETRICS () PRTMETRICS ()

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

611

PUTPROFILEDATA () PUTPROFILEDATA (Section, KeyName, Data, File)

—Q—

QUIT QUIT

—R—

RANDOM () RANDOM (Range)

REAL () REAL (Numeric)

RECORD FORMAT RECORD FORMAT Lines (Row1 Col1) ... (Rown Coln)
WINDOW WinHandle fields

RECORD READ RECORD READ Table AT Record AT Position LENGTH
Bytes

RECORD SCAN RECORD SCAN Table WINDOW WinHandle

RECORD WRITE RECORD WRITE Table AT Record AT Position LENGTH
Bytes

REMOVE DIRECTORY* REMOVE DIRECTORY Path

RESETSERIAL RESETSERIAL

RESTART RESTART

RESULT () RESULT ()

RESUME RESUME

RETURN RETURN

ROUND () ROUND (Real, Places, Boolean)

ROUTE () ROUTE (FileSpec, ATTRIBUTES Type)

—S—

SAVE SAVE FileName

SCREEN () SCREEN (Row, Column, Length, WinHandle)

SCREEN SCREEN (x, y, w, h) Display WINDOW WinHandle

SCROLL DOWN SCROLL DOWN Rows

SCROLL LEFT SCROLL LEFT Columns

SCROLL RIGHT SCROLL RIGHT Columns

SCROLL UP SCROLL UP Rows

SEARCH () SEARCH (Row, Column, Length, String, WinHandle)

SEARCHINRECT () SEARCHINRECT (TopRow, BottomRow, LeftCol,
RightCol, String, WinHandle)

SECONDS () SECONDS (Time, Date)

SELECTION SELECTION StartLine EndLine WINDOW WinHandle

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

612

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

SELECTION APPEND SELECTION APPEND FileName TABLE WINDOW Win-
Handle

SELECTION BUFFER SELECTION BUFFER WINDOW WinHandle

SELECTION PRINT SELECTION PRINT WINDOW WinHandle

SELECTION SAVE SELECTION SAVE FileName TABLE WINDOW
WinHandle

SELECTION SEND SELECTION SEND WINDOW WinHandle

SEND SEND (Row, Col) NOCR String ONEPACKET WAITECHO
WINDOW WinHandle

SENDBREAK* SENDBREAK DelayUnits

SET SET Variable Source

SET APPTITLE SET APPTITLE Name

SET ATTRIBUTES SET ATTRIBUTES FileName Attribute

SET AUTOSCROLLTOCURSOR SET AUTOSCROLLTOCURSOR Boolean

SET AUTOSIZE* SET AUTOSIZE Boolean

SET BACKSPACEDESTRUCTIVE* SET BACKSPACEDESTRUCTIVE Boolean

SET BACKSPACEKEY* SET BACKSPACEKEY Keyword

SET BAUDRATE* SET BAUDRATE Rate

SET BINARYTRANSFERPARAMS* SET BINARYTRANSFERPARAMS OptionKeyWord ActionKey-

Word OptionKeyWord ActionKeyWord…

SET BINARYTRANSFERS SET BINARYTRANSFERS Protocol WINDOW WinHandle

SET BUFFERLINES SET BUFFERLINES Lines

SET CARRIERDETECT* SET CARRIERDETECT Boolean

SET COLUMNS SET COLUMNS Integer

SET CONNECTION* SET CONNECTION Connector Command WINDOW
WinHandle

SET CONNECTMESSAGE* SET CONNECTMESSAGE Text

SET CONNECTRESULT* SET CONNECTRESULT Num

SET CURSOR SET CURSOR Display

SET DATABITS* SET DATABITS Integer

SET DDETIMEOUT SET DDETIMEOUT Seconds

SET DECIMAL SET DECIMAL Numeric

SET DEFAULTSESSIONHANDLE SET DEFAULTSESSIONHANDLE WinHandle

SET DIRECTORY SET DIRECTORY Type CREATE Path

SET EMULATION* SET EMULATION Emulation WINDOW WinHandle

SET FKEYSSHOW SET FKEYSSHOW Boolean

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

613

SET FLOWCONTROL* SET FLOWCONTROL Type

SET KEEPPRINTCHANNELOPEN SET KEEPPRINTCHANNELOPEN KBoolean

SET LOCALECHO* SET LOCALECHO Boolean

SET NETID* SET NETID Text

SET OUTGOINGCR* SET OUTGOINGCR Option

SET PARITY* SET PARITY Type

SET PASSTHROUGH* SET PASSTHROUGH State

SET PASSWORD* SET PASSWORD Text

SET PHONENUMBER* SET PHONENUMBER PhoneNumber

SET RESULT SET RESULT String

SET RETRY* SET RETRY Boolean

SET RETRYDELAY* SET RETRYDELAY Delay

SET SENDDELAY SET SENDDELAY Delay

SET SIGNAL* SET SIGNAL Boolean

SET SOUND SET SOUND Boolean

SET STOPBITS* SET STOPBITS Numeric

SET TERMCLOSE SET TERMCLOSE Boolean WINDOW WinHandle

SET TERMFONT SET TERMFONT FontName SizeX SizeY WINDOW
WinHandle

SET USERID* SET USERID Text

SET WILDCARD* SET WILDCARD Str1 Str2

SET WINDOWTITLE SET WINDOWTITLE String WINDOW WinHandle

SET WORDWRAP* SET WORDWRAP Column

SET XCLOCK SET XCLOCK Time WINDOW WinHandle

SET XSYSTEM SET XSYSTEM Time WINDOW WinHandle

SETTINGS () SETTINGS (Keyword, WinHandle)

SETTINGS SETTINGS Tab WINDOW WinHandle

SHOW SHOW

SPAWN SPAWN SAFE Target WINDOW WinHandle

STR () STR (Numeric, Precision)

SUBSTR () SUBSTR (String, Start, Length)

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

614

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

SWITCH SWITCH SwitchVariable
CASE Var1:
Command
LEAVE
CASE Var2:
Command
LEAVE

DEFAULT:
Command
LEAVE
SWITCH END

SYSMETRICS () SYSMETRICS ()

SYSTEM ()* SYSTEM (SysNum P1, P2)

SYSTEM* SYSTEM SysNum P1, P2, …

—T—

TABLE CLEAR TABLE CLEAR Table

TABLE CLOSE TABLE CLOSE Table

TABLE COPY TABLE COPY SourceTable TO DestTable Contents String

TABLE DEFINE TABLE DEFINE Table FIELDS f1...fi FILE TEXT FileName

TABLE LOAD TABLE LOAD Table FROM Source AS Format

TABLE SAVE TABLE LOAD Table FROM Source AS Format

TABLE SORT TABLE SORT Table Fld1 Dir1 Fld2 Dir2 Fld3 Dir3

TASKERROR TASKERROR Level Code

TIME () TIME (Seconds)

TIMER () TIMER (Index)

TIMER RESET TIMER RESET Timer

TITLE TITLE String

TOOLBARHIDE TOOLBARHIDE BarName

TOOLBARSHOW TOOLBARSHOW BarName

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

615

TRANSFERS TRANSFERS CommandProcessor BLOCKSIZE
Status Length ISSUECLEAR Status PACKETSIZE
Number HOSTPROGRAM FileName RECORDLENGTH
Status Length RECORDFORMAT Type SPACE Status
InitialSpace AddedSpace UNITS Type CPUUSAGE
Number TIMEOUT Number HOSTCODEPAGE Country
PCCODEPAGE Country WINDOW WinHandle

TRIM () TRIM (String, Pre, Post)

TYPEDLIBRARYCALL () TYPEDLIBRARYCALL (LibName, ProcName, TypeString,
Param1, Param2, ..., Paramn)

—U—

UPPER () UPPER (String)

USERID ()* USERID ()

—V—

VERSION () VERSION ()

VISIBLE () VISIBLE (WinHandle)

—W—

WAIT CHAR* WAIT CHAR Character WINDOW WinHandle

WAIT CLOSE* WAIT CLOSE WINDOW WinHandle

WAIT DELAY WAIT DELAY Time

WAIT ECHO WAIT ECHO WINDOW WinHandle

WAIT EDIT WAIT EDIT (x, y, w, h) FileName

WAIT PROMPT* WAIT PROMPT NumChar WINDOW WinHandle

WAIT QUIET WAIT QUIET Time WINDOW WinHandle

WAIT RESUME WAIT RESUME

WAIT SCREEN WAIT SCREEN WINDOW WinHandle

WAIT STRING* WAIT STRING String QUIET Time Window WinHandle

WAIT UNTIL WAIT UNTIL Time

WHEN CANCEL WHEN CANCEL CommandType

WHEN COLLECT WHEN COLLECT Index OnStr OffStr FromStr ToStr
WaitExclude Quiet limit SAVECR NOTTERMINAL
WINDOW WinHandle

WHEN DISCONNECT WHEN DISCONNECT WINDOW WinHandle Command

WHEN ECHO WHEN ECHO StringVar WINDOW WinHandle Command

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

616

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

WHEN ERROR WHEN ERROR LevelNum Command

WHEN INPUT WHEN INPUT StringVar WINDOW WinHandle Command

WHEN QUIET WHEN QUIET Time WINDOW WinHandle Command

WHEN SCREEN WHEN SCREEN Index (Row, Col, Wid, Lns) WINDOW
WinHandle Command

WHEN STRING* WHEN STRING Index String WINDOW WinHandle
Command

WHEN TIMER WHEN TIMER Time Command

WHEN WINDOW* WHEN WINDOW WinHandleVar Message WParam
LParam

WHILE WHILE Boolean Command

WINDOW () WINDOW (WinHandle)

WINDOWHND () WINDOWHND (WinName)

WINDOWNAME () WINDOWNAME (WinHandle)

WINDOW ACTIVATE WINDOW ACTIVATE WinHandle Boolean

WINDOW ARRANGE WINDOW ARRANGE

WINDOW CLOSE WINDOW CLOSE WinHandle

WINDOW DEFAULT WINDOW DEFAULT WinHandle Message WParam
LParam

WINDOW HIDE WINDOW HIDE WinHandle

WINDOW MAXIMIZE WINDOW MAXIMIZE WinHandle

WINDOW MESSAGE WINDOW MESSAGE WinHandle Message WParam
LParam

WINDOW MINIMIZE WINDOW MINIMIZE WinHandle

WINDOW MOVE WINDOW MOVE WinHandle (x, y, w, h)

WINDOW OPEN WINDOW OPEN Type FileName (x, y, w, h) Boolean
WinHandle

WINDOW RESTORE WINDOW RESTORE WinHandle

WINDOW STACK WINDOW STACK

WINDOW UNHIDE WINDOW UNHIDE WinHandle

WNDCLASS () WNDCLASS (WinHandle)

WNDFILE () WNDFILE (WinHandle)

WNDTITLE () WNDTITLE (WinHandle)

Syntax Quick Reference, continued

Command/Function Name Statement Syntax

C
 C

om
m

and and Function Syntax Q
uick R

eference

617

Command/Function Name Statement Syntax

—X—

XFERCONFIG XFERCONFIG String WINDOW WinHandle

—Z—

ZOOMED () ZOOMED (WinHandle)

Syntax Quick Reference, continued

618

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

619

Index

Index

Index

Symbols
3270 emulations

field attributes, retrieving 129, 138, 140
field identifier, retrieving 142
field length, retrieving 141
field starting position, retrieving 143
XCLOCK messages 514
XSYSTEM messages 515

$ (dollar sign)
named string variables 27
statement syntax 51

+ (addition operator or plus sign)
precedence 58
statement syntax 54
use of 38

= (assignment operator)
statement syntax 55
use of 47

* (asterisk)
label statement syntax 49
use of 25

@ (at sign)
use of 50

\ (backslash)
embedding control characters in a string 27
statement syntax 50
use of 23

.bmp files. See bitmap graphics.
^ (caret)

embedding control characters in a string 27
statement syntax 50

: (colon)
use of 50

, (comma)
statement syntax 51
use of 23

| (concatenation operator)
creating string expressions with 35
statement syntax 58
use of 23

.dcp (source script file), defined 17

.dct (task script file), defined 17
/ (division operator)

precedence 58
statement syntax 54
use of 38

! (exclamation point)
statement syntax 51
use of 37

@F (Function key variable)
statement syntax 50
use of 32

> (greater than)

in relational expressions 40
precedence 58
statement syntax 55

>= (greater than or equal to)
in relational expressions 40
precedence 58
statement syntax 56

< (less than)
in relational expressions 40
precedence 58
statement syntax 55

<= (less than or equal to)
in relational expressions 58
precedence 58
statement syntax 56

% (modulus operator)
precedence 58
statement syntax 55
use of 38

* (multiplication operator)
precedence 58
statement syntax 54
use of 38

!= (not equal to)
in relational expressions 40
precedence 58
statement syntax 56

<> (not equal to)
in relational expressions 40
precedence 58
statement syntax 56

(number sign)
statement syntax 51
use of 40, 348, 355

= or == (equal to)
in relational expressions 40
precedence 58
statement syntax 55

() (parentheses)
precedence 58
statement syntax 51
use of 51

% (percent sign)
statement syntax 52
use of 37

. (period)
use of and statement syntax 52

? (question mark)
use of and statement syntax 52

" (quotation mark)
embedding in a string 27
null string, creating 27
statement syntax 52

@R (Record Buffer variable)
statement syntax 50, 66, 68
use of 28

; (semicolon)
use of 24, 53

' (single quote) 52
@S (Settings variable)

statement syntax 50
use of 34

620

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

- (subtraction operator)
precedence 58
statement syntax 54
use of 38

@T (Function Key Title variable)
statement syntax 50
use of 32

- (unary minus)
precedence 58
use of 37

.wmf files. See Windows metafile graphics.

A

ACCESS CANCEL (DDE command). See (DDE) AC-
CESS CANCEL command.

ACCESS (DDE command). See (DDE) ACCESS com-
mand.

ACTIVE function 96
active session, defined 74
active window, defined 74
addition operator (+)

precedence 58
statement syntax 54
use of 38

ADDS emulation, configuring.. See emulation configura-
tion.

advise message
determining reception of 112
servicing requests via script 270

AND (Boolean operator)
precedence 58
use of 57

AND function. See BAND function.
ANSI emulation, configuring. See emulation configura-

tion.
API (Application Programming Interface) calls 203
APPCONFIG command 240–241
appending selected text to a file 453
application configuration 85
applications, launching via script 393
application title, setting 465
arguments

Command 22
definition 20
field 28, 31
file names 43
Function 51
Key 32
Numeric 43
Table 28, 31, 43, 64, 67
types 43
valid content type 20
WinHandle 74

ARGUMENTS command 242
creating variables 47, 62
example of 61, 63

argument types 43
ASCII characters

converted to 346
embedding 27, 50

in CHR function 105
assigning values to variables 47, 59
assignment commands, grouped 227
assignment operator (=)

defined 21
precedence 58
use of 47

asterisk (*)
as modulus operator 38
label statement syntax 49
use of 25

AT&T emulations, configuring. See emulation configura-
tion.

attributes
of fields, retrieving 129, 138, 140
of files, retrieving 97

ATTRIBUTES function 97
autosizing font 468
autostart script, defined and use of 17

B
backslash (\)

embedding control characters 27
statement syntax 50
use of 23

backspace key, setting 469, 470
BAND function 98
baud rate, setting 471
BEEP command 243
BEGIN command 244

example of 22, 45, 106, 501
bell (host), enabled state 506
bell (PC), ringing via script 243
bitmap graphics

adding to scripted dialog boxes 311
copyig to a printer 325
copying to the clipboard 325

bitwise
AND operation 98
complement operation 99
OR operation 101, 104

BNOT function 99
Boolean constants, statement syntax and use of 40
Boolean expressions

definition and use of 41
parameters, passing 61

Boolean functions
definition and use of 40
grouped 92

Boolean modifiers 57
Boolean operators

AND 57
NOT 57
OR 57
use of 41

Booleans
complex 42

Boolean value 100, 107, 112
Boolean variables, named

definition and use of 40, 47, 48
parameters, passing 62

BOOL function 100

621

Index

BOR function 101
branching commands, grouped 227
BREAK command 245

use of 33
break, sending to a host 463
break signal, sending via script 245
BUFFER function 102
buffer, session. See history buffer.
BUTTON (Dialog command). See (DIALOG) BUTTON

command.
buttons (in scripted dialog boxes)

creating 291
positioning and sizing 300
updating attributes 296, 315

BXOR function 104

C
CANCEL command 246

example of 56
capturing data, functions for 92
capturing incoming data, command 248
caret (^)

embedding control characters, used to 27
statement syntax 50

carriage return, outgoing 496
carrier detection 476
cascading windows 586
channel numbers (DDE) 80
characters

copying to
a file 325
a printer 325
the clipboard 324

displaying in a session window 319
echo in session, detecting 548
print attributes 431
removing from a string 202
replacing in a string 136
waiting for specified 544, 548

CHECKBOX (Dialog command). See (DIALOG) CHECK-
BOX command.

check boxes (in scripted dialog boxes)
creating 294
determining status of 116
positioning and sizing 300
updating attributes 296, 315

child routine, defined 59
child windows 110
CHR function 105–106

example of 105
CLEAR command 247
clipboard

copying characters to 324
copying graphics to 325
cutting to 328
pasting text from 331

COLLECT command 248–250
example of 47
use of 47

colon (:), definition and use of 50
column width, setting 477

combo boxes. See list boxes.
comma (,)

statement syntax 51
use of 23

command block 51
defined and use of 22

command block commands, grouped 228
command blocks

beginning 244
branching to multiple 519
ending 343
for scripted menus 405

commands
assignment operations, grouped 227
branching operations, grouped 227
command block operations, grouped 228
conditional operations, grouped 227
configuration operations, grouped 228
continuing on another line 23
conversion operations, grouped 229
data and file transfer operations, grouped 229
DDE operations, grouped 231
defined 20
dialog operations, grouped 230
DLL operations, grouped 231
edit operations, grouped 231
file operations, grouped 232
listed with brief explanations 217, 604
math operations, grouped 233
menu operations, grouped 233
multiple on the same line 23
network operations, grouped 233
new to DCS, listed 600
print operations, grouped 234
removed from DCS, listed 601
script control operations, grouped 234
session window operations, grouped 235
string operations, grouped 235
subroutine operations, grouped 227
system operations, grouped 236
table operations, grouped 236
telecommunications operations, grouped 237
toolbar operations, grouped 233

command syntax 20
comments, defined and syntax 24
COMPILE command 251
compiling scripts 17

caution note 19
errors 19
via script 251

complex
Booleans 42
numeric variable, defined and use of 38
string

creating 27
defined and use of 36

compressing files 346
CONCAT command 252
concatenation

of strings via script 36, 252
concatenation operator (|)

statement syntax 58
use of 23

conditional branching, event-based 76

622

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

conditional commands, grouped 227
configuration commands, grouped 228
configuration functions, grouped 92
configuring

application options via script 240
applications 85
connectors 84
connectors via script 253, 478
displays 84
displays via script 321
emulations 84
emulations via script 334, 488
file transfers 84
file transfers via script 472, 474, 539, 588
menus 85
sessions 84
sessions via script 516
toolbar 85

CONNCONFIG command 253–255
CONNECT command 256–257

example of 56
use of 74

CONNECT function 107
connecting a session via script 256
connection status, determining 107
connection termination, detecting 561
CONNECTMESSAGE function 108
ConnectMessage system variable

retrieving current value 108
setting 480

connector configuration 84, 478
command and keywords 253
retrieving current settings 146

CONNECTRESULT function 109
ConnectResult system variable

retrieving current value 109
setting 481

constant
Boolean 40
numeric 37

CONTINUE command 258
continuing, line 23
control characters

defined 43
embedding in a string 27

conversion commands, grouped 229
conversion functions, grouped 92
conversion of scripts 84
converting numeric variables 37
copying

characters to clipboard 325
files 347

CREATE DIRECTORY command 259
critical errors 82
cursor

appearance, setting 482
automatic scrolling to, setting 467
positioning at beginning of line 330

CURSOR function 110
cursor position 110
cutting to the clipboard 328

D

data
receiving from DDE server 268
retrieving from screen display 102, 178
searching and capturing functions, grouped 92
sending to DDE server 264

data bits, setting 483
data items (DDE) 80
data manipulation through tables 64
data types 28
DATE function 111
date, retrieving 111
DCS

terminating via script 434
version number, retrieving 207

DDE. See DDE (Dynamic Data Exchange).
(DDE) ACCESS CANCEL command 262
(DDE) ACCESS command 260–261

example of 81
use of 80

(DDE) ADVISE function 112
DDE (Dynamic Data Exchange)

canceling wait state 557
commands, grouped 231
commands, sending to server 263
concepts and use of 78
conversation initiation, detecting 275
conversation termination, detecting 280
data

receiving from a server 265
sending to server 264

DCS server name 79
events, detecting 275, 276, 278, 280
functions, grouped 93
initiating via script 260
maximum number of channels 80
overview of 78
servicing requests 271, 273, 276, 278
statement syntax for messages 81
structured table

sending to server 266, 269
storing received data 268

terminating via script 262
wait signal 270

(DDE) INSTRUCT command 263
example of 81

(DDE) POKE command 264
use of 80

(DDE) REQUEST command 265
use of 47, 80

(DDE) TABLE REPLY command 266–267
(DDE) TABLE REQUEST command 268

use of 80
(DDE) TABLE SEND command 269

use of 80
(DDE) WAIT SIGNAL command 270
(DDE) WHEN ADVISE command 271–272
(DDE) WHEN EXECUTE command 273–274
(DDE) WHEN INITIATE command 275

use of 80
(DDE) WHEN POKE command 276–277
(DDE) WHEN REQUEST command 278–279
(DDE) WHEN TERMINATE command 280
DEBUG command 281–282
debug window

623

Index

hiding 419
showing 517

decimal places, setting 485
decompressing files 351
DECREMENT command 283
DECRYPT function 113–114
decrypting files 352
default directories, listed 123
DEFAULTSESSIONHANDLE function 115

and multiple concurrent scripts 74
use of 75

default session window handle, setting 486
delaying script execution 546

during memo editing 549
waiting for a string 555
waiting for period of inactivity 551
waiting for RESUME command 553
waiting for screen refresh 554
waiting for specified file to close 545
waiting for specified number of characters 550
waiting for specified time of day 556

destination argument. See file name arguments.
detecting events during script execution 76
dial

retries, setting 502
retry delay, setting 503
signal, setting 505

DIAL command 284–285
example of 500, 502
use of 35

dialog boxes, scripted
as child routines 59
bitmap graphics

adding 311
updating 315

buttons
creating 291
positioning and sizing 300
updating attributes 296, 315

check boxes
creating 294
positioning and sizing 300
updating attributes 296, 315

controls
creating 307
maximum number of 288
updating 296–299, 315

creating (command structure) 286
destroying 293
displaying

pictures 311
text 309

edit text boxes
creating 301
positioning and sizing 300
updating attributes 296, 315

group boxes
creating 303
positioning and sizing 300
updating attributes 296, 315

icon buttons
creating 305
positioning and sizing 300

updating attributes 296, 315
icons

creating 304
positioning and sizing 300
updating attributes 296, 315

line spaces, adding 310
list boxes

creating 307
positioning and sizing 300
updating attributes 296, 315

messages
creating 309
positioning and sizing 300
updating attributes 296, 315

modal vs. non-modal 287
radio buttons

creating 312
positioning and sizing 300
updating attributes 296, 315

radio groups
creating 313
positioning and sizing 300
updating attributes 296, 315

title bar and control menu 286
updating controls 296
widebuttons, updating attributes 296, 315
Windows metafile graphics

adding 311
updating 315

(DIALOG) BUTTON command 291–292
DIALOG CANCEL command 293

example of 35
(DIALOG) CHECKBOX command 294–295
(DIALOG) CHECKBOX function 116
DIALOG command 286–290
dialog commands

grouped 230
used in command blocks 22

DIALOG CONTROL command 296–299
(DIALOG) DIMENSION command 300
(DIALOG) EDITTEXT command 301–302

example of 35
(DIALOG) EDITTEXT function 117
dialog functions, grouped 93
(DIALOG) GROUPBOX command 303
DIALOGHANDLE 122
(DIALOG) ICONBUTTON command 305–306
(DIALOG) ICON command 304
(DIALOG) LISTBOX command 307–308
(DIALOG) LISTBOX function 118
(DIALOG) MESSAGEBOX function 119–120
(DIALOG) MESSAGE command 309
(DIALOG) NEWLINE command 310
(DIALOG) PICTURE command 311
(DIALOG) RADIOBUTTON command 312
(DIALOG) RADIOGROUP command 313–314
(DIALOG) RADIOGROUP function 121
dialogs, Script Compiler 19
DIALOG UPDATE command 315–317
Digital VT emulations, configuring. See emulation con-

figuration.
DIMENSION (Dialog command). See (DIALOG) DIMEN-

SION command.

624

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

dimensions, window, retrieving 167
directories

creating via script 259
default paths, listed 123
default paths, setting 487
deleting 441

DIRECTORY function 123–124
example of 97

Direct Serial connector. See also connector configura-
tion.

baud rate, setting 471
data bits, setting 483
dialing via script 284
flowcontrol, setting 491
parity, setting 497
stopbits, setting 507

direct variables, defined and use of 47
DISCONNECT command 318
disconnecting a session 318
disk space, determining free remaining 194
DISKSPACE function 125
DISPLAY command 319–320

example of 22, 31, 41, 45, 106, 109
use of 47

DISPLAYCONFIG command 321–322
display configuration 84

autosize font, setting 468
command and keywords 321
cursor appearance 482
font size, setting 509
font type, setting 509
local echo, setting 494
retrieving current settings 147

displaying characters in a session window 319
division operator (/)

precedence 58
statement syntax 54
use of 38

DLL (Dynamic Link Library)
API calls, retrieving values 203
calling 397
commands, grouped 231
loading 400
unloading 401

dollar sign ($)
named string variables 27
statement syntax 51

DROPDTR command 323
DTR line 323
dynamic data exchange. See DDE (Dynamic Data

Exchange).
Dynamic Data Exchange (DDE). See DDE (Dynamic

Data Exchange).
Dynamic Link Library (DLL). See DLL (Dynamic Link

Library).

E
edit commands, grouped 231
EDIT COPY command 324
EDIT COPYSPECIAL command 325–327

EDIT CUT command 328
EDIT FIND command 329
EDIT GOTO command 330
editing scripts 18
EDIT PASTE command 331
EDIT REPLACE command 332–333
edit text boxes (in scripted dialog boxes)

creating 301
postioning and sizing 300
retrieving contents of 117
updating attributes 296, 315

EDITTEXT (Dialog command). See (DIALOG) EDIT-
TEXT command.

ELSE clause
example of 23
used in command blocks 22

embedding characters in a string 27
emulation configuration 84, 488

command and keywords 334
retrieving current settings 148

EMULCONFIG command 334–342
encrypted strings, decrypting 113
ENCRYPT function 126
encrypting 126
encrypting files 354
encryption key. See ENCRYPT function.
END command 343

example of 22, 501
used in command blocks 22

end-of-file. See EOF function.
EOF function 127

example of 45, 46, 57
equal to operator (= or ==)

in relational expressions 40
precedence 58
statement syntax 55

error detection 563
ERROR function 128

example of 46, 49
returns 97, 107, 110
use of 82

error numbers. See also TASKERROR command.;
See task errors.

errors 82
errors, determining occurrence of 128
escape sequences, representing in a string 27
evaluation order 51, 55
event handling, defined and use of 76
events 76, 77
exclamation point (!)

statement syntax 51
use of 37

EXECUTE command 344
use of 33, 44

executing scripts 18
EXFLDATTR function 129–133
existence of a file, determining 134
EXISTS function 134
exponential function 168. See POWER function.
expressions

Boolean 41
defined 21

625

Index

described 21
numeric, creating 38
relational 40
string 35

F

far target arguments, definition and use of. See labels.
far targets

definition and use of 45
executing 422
returning from 445

fatal errors 82
field functions, grouped 93
fields

attributes, retrieving 129, 138, 140
defining

for structured tables 64
for text tables 67

identifier, retrieving 142
length, retrieving 141
starting position, retrieving 143

file attributes 97
FILE CLOSE command 345
FILE COMPRESS command 346
FILE COPY command 347
FILE CREATENAME command 348–350

use of 47
FILE DECOMPRESS command 351
FILE DECRYPT command 352
FILE DELETE command 353
FILE ENCRYPT command 354
file name arguments, definition and use of 43
FILE OPENNAME command 355–356

use of 47
FILE PAUSE command 357
FILE RECEIVE BINARY command 358–360
FILE RENAME command 361
FILE RESUME command 362
files

appending selected text to 453
attributes as numeric values, listed 97
attributes, setting 466
commands, grouped 232
compressing 346
copying 347
creating 348
decrypting 352
deleting 353
encrypting 354
existence, determining 134
functions, grouped 93
logging incoming data to 404
name, retrieving from associated window 213
opening 355, 583
path names, representing 43
renaming 361
retrieving default path by type 123
saving 446
session, loading 403
size, determining 135
uncompressing 351

FILE SEND BINARY command 363–365
FILESIZE function 135
file transfer commands, grouped 229, 232
file transfer configuration 84, 474, 539, 588

retrieving current settings 151
word wrap, setting 513

file transfers
configuring 84, 472, 474, 539, 588
receiving binary files 358
resuming suspended 362
sending binary files 363
suspending 357
terminating 345
waiting for specified file to close 545

FILTER function 136–137
find or finding. See searching.
FKEYS command 366
FLDATTREXPOS function 140
FLDATTR function 138–139
FLDLEN function 141
FLDNUM function 142
FLDPOS function 143
FLDTEXT function 144
flow control, setting 491
font configuration. See display configuration.
free disk space, determining 125
Function Key Title variable (@T)

maximum characters 32
statement syntax 50

Function Key variable (@F)
example of 50
maximum characters 32
statement syntax 50

functions
Boolean 40
Boolean operations, grouped 92
configuration operations, grouped 92
conversion operations, grouped 92
data searching and capturing operation, grouped 92
DDE operations, grouped 93
defined 20
dialog opeartions, grouped 93
field operations, grouped 93
file operations, grouped 93
listed with brief explanations 88, 604
math operation, grouped 94
menu operations, grouped 94
new to DCS, listed 600
numeric 37
removed from DCS, listed 602
string operations, grouped 94
system operations, grouped 94
table operations, grouped 95
telecommunication operations, grouped 95
window operations, grouped 95

function syntax 20

G
GENERALCONFIG command 367–368
GETAPPCONFIG function 145

626

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

GETCONNCONFIG function 146
GETDISPLAYCONFIG function 147
GETEMULCONFIG function 148
GETGENERALCONFIG function 149
GETPROFILEDATA function 150
GETXFERCONFIG function 151–152
GOTO command 369

example of 23, 46, 107
use of 44

greater than operator (>)
in relational expressions 40
precedence 58
statement syntax 55

greater than or equal to operator (>=)
in relational expressions 40
precedence 58
statement syntax 56

GROUPBOX (Dialog command). See (DIALOG)
GROUPBOX command.

group boxes (in scripted dialog boxes)
creating 303
positioning and sizing 300
updating attributes 296, 315

grouped. See radio groups (in scripted dialog boxes).

H
HANGUP command 370
hidden windows, effect on commands 74
history buffer

saving selected text 456
scrolling

down 448
left 449
right 450
up 451

selected text, sending 457
selecting text in 454
size, setting 475

host cursor position, retrieving 110
HWNDLIST function 153–154

use of 74

I

ICONBUTTON (Dialog command). See (DIALOG) ICON-
BUTTON command.

icon buttons (in scripted dialog boxes)
creating 305
positioning and sizing 300
updating attributes 296, 315

ICON (Dialog command). See (DIALOG) ICON com-
mand.

ICONIC function 155
icons (in scripted dialog boxes)

creating 304
positioning and sizing 300
updating attributes 296, 315

IF command 371
example of 22, 23, 41, 83, 107, 112, 116

IF - ELSE command block, across multiple lines 23
Include Line Numbers 19

INCREMENT command 372
example of 22, 31, 48, 70, 106

indirect variables, definition and use of 48
initialization files

creating or changing entries 170
retrieving entry text 150

integer numeric variable
converting to real variable 37
defined 37
example of 38

integers
converting

to real numerics 173
intergers

converting
from a real numeric 156
from a string 163
to Boolean values 100

INT function 156
use of 37

ITEM (Menu command). See (MENU) ITEM command.

K
keep print channel open, setting 492
Kermit configuration. See file transfer configuration.
KERMIT COPY command 373
KERMIT DIRECTORY command 374
KERMIT ERASE command 375
KERMIT FINISH command 376
KERMIT FREESPACE command 377
KERMIT HELP command 378
KERMIT LOGOUT command 379
KERMIT MESSAGE command 380
KERMIT NEWDIRECTORY command 381
KERMIT RENAME command 382
KERMIT TYPE command 383
KERMIT WHO command 384
keyboard

input, detecting 564
remapping via script 385
resetting 391
state, resetting 389

KEYBOARD command 389
KEY command 385–388

example of 105
use of 44

key map files
loading 390
resetting 391
saving 392

KEYMAP LOAD command 390
KEYMAP RESET command 391
KEYMAP SAVE command 392
keywords

CHAR, INT and REAL in TABLE DEFINE command
29

FILE in TABLE DEFINE command 64
TEXT in TABLE DEFINE command 67

L

627

Index

labels
defined and use of 25
definition and use of. See far target arguments; near

target arguments.
statement syntax 49

LAUNCH command 393–394
example of 43

LEAVE command 395
length

of fields 141
LENGTH function 157

example of 36
length of a string, determining 157
less than operator (<)

in relational expressions 40
precedence 58
statement syntax 55

less than or equal to operator (<=)
in relational expressions 40
precedence 58
statement syntax 56

LEVEL command 396
example of 33
use of 32

LIBRARY CALL command 397–399
LIBRARY LOAD command 400
LIBRARY UNLOAD command 401
line continuation 23, 50
line numbers, adding to scripts 19, 402
LINENUMBERS command 402
LISTBOX (Dialog command). See (DIALOG) LISTBOX

command.
list boxes (in scripted dialog boxes)

creating 307
determining currently selected item 118
positioning and sizing 300
updating attributes 296, 315

LOAD command 403
example of 35, 500

local echo, setting 494
logical structures 22
LOGTOFILE command 404
loop structure, creating 573

M
math

commands, grouped 233
functions, grouped 94
operators, listed 54

maximized window state, determining 215
maximizing a window 447, 579
maximum characters

for capturing incoming data 248
for function key title variables 32
for Function Key variables 32
for named Boolean variables 40
for named numeric variables 37
in a named string variable 27
in a structured table field 64
in Record Buffer variables 27

maximum number of

controls in a dialog box 288
DDE channels 80
fields in a structured table 28
tables 28, 64

memory, free remaining, determining 194
MENU CANCEL command 406

example of 72
(MENU) CHECKED function 158
MENU command 405

example of 73
menu commands

grouped 233
working with 71

MENU DELETE ITEM command 407
MENU DELETE POPUP command 408
menu editor 71
(MENU) ENABLED function 159
menu functions, grouped 94
MENU INSERT ITEM command 409–410
MENU INSERT POPUP command 411
(MENU) ITEM command 412–413

example of 73
menu items

determining if checked 158
determining if enabled 159

(MENU) POPUP command 414–415
example of 73

(MENU) SEPARATOR command 416
example of 73

menus, scripted
configuration via script 85
creating 405
destroying 406
items, adding 412
items, deleting 407
popup menus, adding 411, 414
popup menus, deleting 408
popup menus, example of 73
separators, adding 416
updating 417

MENU UPDATE command 417–418
Meridian LAT32 connector, configuring. See connector

configuration.
messages. See also messages (in scripted dialog

boxes).
determining response with 112
displaying 119

messages (in scripted dialog boxes)
creating 309
positioning and sizing 300
updating attributes 296, 315

META keys 33
MIDI application 71
minimized window state, determining 155
minimizing a window 581
modal dialog boxes 287
modem

dialing via script 284
disconnecting 370

Modem connector, configuring. See connector configura-
tion.

modular scripts
creating with labels 25

628

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

use of parent and child routines 61
modulus operator (%)

precedence 58
statement syntax 55
use of 38

multiple concurrent scripts
launching 518
programming considerations 75
running 84

multiplication operator (*)
precedence 58
statement syntax 54
use of 38

N
named Boolean variables 40
named numeric variables 37
named string variables

defined and use of 27
maximum characters 27

near targets
arguments, defined and use of 44
executing 422
returning from 445

NETID function 160
network commands, grouped 233
Network ID system variable

setting 495
NetworkID system variable

retrieving current value 160
new commands, listed 600
new functions, listed 600
NEWLINE (Dialog command). See (DIALOG) NEWLINE

command.
new scripts, creating 17
NEXT function 161
NOSHOW command 419
NOT (Boolean operator)

example of 41
precedence 58
use of 57

not equal to operator (<> or !=)
in relational expressions 40
precedence 58
statement syntax 56

null string, creating 27
number sign (#)

use of 40, 51, 348, 355
numeric constants, defined 37
numeric expressions

creating 38
parameters, passing 61

numeric functions, defined 37
numeric operand 37
numerics 21, 37, 38, 50

converting to strings 105, 192
numeric variables, complex

defined and use of 38
numeric variables, named

defined and use of 37, 47
parameters, passing 61

NUM function 162
example of 30

O
operands

Boolean 40
defined 21
multiple on the same line 23
numeric 37, 52
strings, defined 27
types 21

operations
AND 98
OR 101, 104
table 65

operator characters
defined and use of 54
precedence, listed 58

operators
assignment 47, 55
concatenation 36
math 54
precedence 58
relational 55, 56
using 38

optional syntax, notation convention 20
OR (Boolean operator)

example of 57
precedence 58
use of 57

ORD function 163
outgoing carriage return, setting 496

P
parameter lists 51
parameter passing (DLL) 397
parameters

passing between child and parent routines 61
working with 61

parentheses (()), use of and statement syntax 51
parent routine, defined 59
parity, setting 497
PARSE command 420–421

use of 47
passing variable parameters 61
passthrough printing, setting 498
PASSWORD function 164
Password system variable

retrieving current value 164
setting 499

pasting from the clipboard 331
path and file names, respresenting 43
percent sign (%)

as modulus operator 38
statement syntax 55
use of 37

629

Index

PERFORM command 422
compared with SPAWN command 518
example of 45, 63, 112, 116, 495
use of 33, 44

period (.), use of and statement syntax 52
PHONENUMBER function 165
Phonenumber system variable

retrieving current value 165
setting 500

PICTURE (Dialog command). See (DIALOG) PICTURE
command.

piping symbol (|). See concatenation operator.
plus sign (+). See addition operator (+).
POKE (DDE command). See (DDE) POKE command.
POPUP (Menu command). See (MENU) POPUP com-

mand.
POS function 166
position

of a window, determining 167
of first characer in a string, determining 166
of host cursor, determining 110

POSITION function 167
pound sign (#). See number sign (#).
POWER function 168
precedence of operators, listed 58
PRINT CANCEL command 423
PRINT CLOSE command 424
PRINT FILE command 425

example of 498
PRINT FONT command 426
printing

carriage return or line feed 427
character attributes, setting 431
closing print channel 424
commands, grouped 234
file to printer 425
form feed 428
keep print channel open, setting 492
parameters, retrieving 169
passthrough state, setting 498
print channel, opening 429
printer font, changing 426
screen data, routing to printer 433
selected window area 455
string to printer 430
tab widths, setting 432
terminating via script 423

PRINT NEWLINE command 427
PRINT NEWPAGE command 428
PRINT OPEN command 429
PRINT STRING command 430
PRINT STYLE command 431
PRINT TABS command 432
PRINT TERMINAL command 433
programming considerations

for multiple concurrent scripts 75
PRTMETRICS function 169
PUTPROFILEDATA function 170–171

Q
question mark (?), use of and statement syntax 52

QUIT command 434
quotation mark (" or ')

embedding in a string 27
null string, creating 27
statement syntax 52

R

RADIOBUTTON (Dialog command). See (DIALOG)
RADIOBUTTON command.

radio buttons (in scripted dialog boxes)
creating 312
grouped. See radio groups.
positioning and sizing 300
updating attributes 296, 315

RADIOGROUP (Dialog command). See (DIALOG) RA-
DIOGROUP command.

radio groups (in scripted dialog boxes)
creating 313
determining currently selected button 121
positioning and sizing 300
updating attributes 296, 315

RANDOM function 172
random numbers, generating 172
REAL function 173

use of 37
real numerics

converting
from an integer 173
from a string 162
to integers 156

decimal places, setting 485
exponential function 168
rounding operation 175

real numeric variable
converting to interger variable 37
defined 37
example of 38

Record Buffer variable (@R)
use of 28

Record Buffer variables
definition and use of 27
examples of 30
for structured tables 28
for text tables 28
maximum character 27
statement syntax 28, 50

RECORD FORMAT command 435
use of 66

RECORD READ command 436–437
example of 24, 31, 45, 66, 118
use of 68

RECORD SCAN command 438
use of 66

RECORD WRITE command 439–440
example of 31, 67, 70, 113

relational expressions, definition and use of 40
remapping keys via script 385
removed commands, listed 601
removed functions, listed 602
REMOVE DIRECTORY command 441
REQUEST (DDE command). See (DDE) REQUEST

630

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

command.
RESETSERIAL command 442
RESTART command 443
RESULT function 174
Result system variable

setting 501
Result sytem variable

current value, retrieving 174
RESUME command 444

example of 22, 76
resuming script execution 444

due to keyboard input 564
due to received character 562
due to received string 569
due to session disconnect 561
due to specified elapsed time 571
due to specified period of inactivity 566
due to specified screen activity 567
due to specified Windows message 572

retry delay, setting 503
RETURN command 445

example of 45
ROUND function 175
ROUTE function 176–177

example of 52
rules, scoping 59, 60
run-time errors 82

S
SAVE command 446

example of 34
scoping rules 59, 60
SCREEN command 447
SCREEN function 178–179
Script Compiler dialog 19
script control commands, grouped 234
scripts

autostart 17
compiling and executing 18
compiling via script 251
converting 84, 85
converting or updating from previous versions 84
creating 17
delaying execution 546
editing 17
launching from a script 518
modular 61
multiple concurrent, writing and running 84
multiple sessions 84, 85
restarting 443
resuming execution 444
saving 18
starting from within scripts 344
stopping 434
stopping via script 246
title, assigning 536

scroll buffer. See history buffer.
SCROLL DOWN command 448
SCROLL LEFT command 449
SCROLL RIGHT command 450
SCROLL UP command 451

SEARCH function 180–181
example of 51, 56

searching a window 329
searching data, functions for 92
searching for and replacing characters 332
SEARCHINRECT function 182
SECONDS function 183

example of 55
SELECTION APPEND command 453
SELECTION BUFFER command 454
SELECTION command 452
SELECTION PRINT command 455
SELECTION SAVE command 456
SELECTION SEND command 457
semicolon (;)

statement syntax 53
use of 24

SENDBREAK command 463
SEND command 458–462

example of 35, 56, 105
sending delay, setting 504
sending text to a host 458
SEPARATOR (Menu command). See (MENU) SEPARA-

TOR command.
separators 52
serial port, resetting 442
session

break, sending to a host 463
buffer. See history buffer.
closing of, restricting 508
column width, setting 477
connecting via script 256
connection status, determining 107
default window handle, setting 486
disconnecting 318
DTR and serial port 323
history buffer. See history buffer.
loading a saved file 403
saving 446
selected text, appending to file 453
selected text, saving 456
selected text, sending 457
selecting text 452
sending text to a host 458
termination, detecting 561

session buffer. See history buffer.
session configuration 84, 516

command and keywords 367
current settings, file transfer, retrieving 184–187
current settings, general, retrieving 184–191

Session Properties dialog, displaying 516
sessions, configuring 84, 85
session toolbars

displaying 490
display, state 366
levels, assigning 396

session window commands, grouped 235
session windows 109, 115
SET APPTITLE command 465
SET ATTRIBUTES command 466
SET AUTOSCROLLTOCURSOR command 467
SET AUTOSIZE command 468

631

Index

SET BACKSPACEDESTRUCTIVE command 469
SET BACKSPACEKEY command 470
SET BAUDRATE command 471
SET BINARYTRANSFERPARAMS command 472–473
SET BINARYTRANSFERS command 474
SET BUFFERLINES command 475
SET CARRIERDETECT command 476
SET COLUMNS command 477
SET command 464

example of 51
use of 21, 47, 54

SET CONNECTION command 478–479
SET CONNECTMESSAGE command 480
SET CONNECTRESULT command 481
SET CURSOR command 482
SET DATABITS command 483
SET DDETIMEOUT command 484
SET DECIMAL command 485
SET DEFAULTSESSIONHANDLE command 486

and multiple concurrent scripts 75
use of 74, 75

SET DIRECTORY command 487
SET EMULATION command 488–489
SET FKEYSSHOW command 490
SET FLOWCONTROL command 491
SET KEEPPRINTCHANNELOPEN command 492–493
SET LOCALECHO command 494
SET NETID command 495
SET OUTGOINGCR command 496
SET PARITY command 497
SET PASSTHROUGH command 498
SET PASSWORD command 499
SET PHONENUMBER command 500
SET RESULT command 501
SET RETRY command 502
SET RETRYDELAY command 503
SET SENDDELAY command 504
SET SIGNAL command 505
SET SOUND command 506
SET STOPBITS command 507
SET TERMCLOSE command 508
SET TERMFONT command 509
SETTINGS command 516
SETTINGS function 184–191
settings variables (@S)

defined and use of 34
statement syntax 50

SET USERID command 510
SET WILDCARD command 511
SET WINDOWTITLE command 512
SET WORDWRAP command 513
SET XCLOCK command 514
SET XSYSTEM command 515
SHOW command 517

use of 19
size of a file, determining 135
size of scripted dialog box 300
sounds, host enabled state 506
source argument. See file name arguments.
source script file, defined 17
SPAWN command 518

and multiple concurrent scripts 75
startup scripts 17

stopbits, setting 507
stopping script execution 246
STR function 192

example of 55
string constants, defined and use of 27
string expressions

creating 27
definition and use of 35
parameters, passing 62

string functions, grouped 94
strings 21, 27–36

as expressions, defined and use of 35
capturing incoming data into 248
commands, grouped 235
complex 36
complex, defined and use of 36
concatenation via script 252
constants 27
converting from

a numeric 105, 192
converting to

integers 163
real numerics 162
uppercase 205

creating complex 27
displaying in a session window 319
functions 27
functions, defined and use 27
in scripted dialog boxes. See messages (in scripted

dialog boxes).
joining via script 252
length, determining 157
mapping to a key 385
parsing 420
position of first character, determining 166, 180, 182
printing 430
removing characters from 202
replacing characters 136
searching for 182, 329
searching for and replacing 332
sending to a host 458
wildcard characters, setting 511

string variable, named
defined and use of 47
definition and use of 27
parameters, passing 61

structured tables
clearing of data 523
data, importing 529
defined 64
field data types 28
manipulating records 66
manipulating whole table 65
maximum characters in a field 64
maximum number of fields 28
reading data from 66, 436
Record Buffer variables 27, 30
record format, creating 435
saving 67
saving to clipboard 530
saving to file 530
sending to DDE server 266, 269

632

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

sorting 531
statement syntax 64
writing data to 67, 438, 439

subroutine commands, grouped 227
subroutines 33, 61, 62, 63

executing 422
returning from 445

SUBSTR function 193
subtraction operator (-)

precedence 58
statement syntax 54
use of 38

SWITCH command 519–520
symbols 50

$ (dollar sign) 51
" and ' (quotation marks) 52
@ (at sign) 50
\ (backslash) 50
^ (caret) 50
characters, definition and use of 49
, (comma) 51
! (exclamation point) 51
(number sign) 51
() (parentheses) 51
% (percent sign) 52
. (period) 52
? (question mark) 52
; (semicolon) 53

syntax
quick reference 604
statement 20

SYSMETRICS function 194
system bell (PC), ringing via script 243
SYSTEM command 521–522
system commands, grouped 236
SYSTEM function 195–196
system functions, grouped 94
system parameters

retrieving 194, 195
setting 521

system variables 47
ConnectMessage 108
ConnectResult 109
NetworkID 160
Password 164
PhoneNumber 165
Result 174
UserID 206

T
table arguments, definition and use of 43
TABLE CLEAR command 523
TABLE CLOSE command 524
table commands, grouped 236
TABLE COPY command 525–526
TABLE DEFINE command 527–528

example of 23, 30, 31, 57, 65, 113
for structured table 29, 65
use of 28, 64, 68
use of keywords 28, 64, 67

table field 52

table functions, grouped 95
TABLE LOAD command 529

example of 31, 57
TABLE REPLY (DDE command). See (DDE) TABLE

REPLY command.
TABLE REQUEST (DDE command). See (DDE) TABLE

REQUEST command.
tables. See structured tables; text tables.

clearing of data 523
closing 524
copying data 525
defined and use of 64
defining 527
end of, determining 127. See also EOF function.
manipulating structured tables 65
maximum number 28, 64
reading data from 436
record format, creating 435
structured 28, 64

saving 67
text 28, 67
use of (overview) 64
writing data to 438, 439

TABLE SAVE command 530
use of 67

TABLE SEND (DDE command). See (DDE) TABLE
SEND command.

TABLE SORT command 531
targets

far 33, 45
near 44

TASKERROR command 532
example of 501

task errors
defined 82
listed with brief explanations 595

TASKFILE ii–xiv
task script file, defined 17
telecommunication

commands, grouped 237
functions, grouped 95

TeleVideo emulations, configuring.. See emulation
configuration.

Telnet connector, configuring.. See connector configura-
tion.

terminating file transfers 345
text (in scripted dialog boxes.. See messages (in scripted

dialog boxes).
text tables

clearing of data 523
defining 67, 527
manipulating records 68
manipulating whole table 68
maximum record length 67
reading data from 68, 436
Record Buffer variables 28
statement syntax 67
writing data to 70, 438

tiling windows 575
time

determining elapsed 201
retrieving a value 197, 198, 199, 200

TIME function 200
TIMER function 201

633

Index

TIMER RESET command 535
TITLE command 536
toolbar commands, grouped 233
toolbar configuration via script 85
TOOLBARHIDE command 537
toolbars

hiding 537
showing 538

TOOLBARSHOW command 538
TRANSFERS command 539–543
TRIM function 202
troubleshooting 563

DEBUG command 281
debug window, hiding 419
debug window, showing 517

TYPEDLIBRARYCALL function 203–204

U
unadvise message, determining reception of 112
unary minus operator (-)

precedence 58
use of 54

uncompressing files 351
updating scripts 84
UPPER function 205
USERID function 206
UserID system variable

current value, retrieving 206
setting 510

V
variables

assigning values via script 464
Boolean 40, 47, 51
branching, effect of 59
complex numeric 38
created in child routine 60
creating 47
creation of 59
DDE data, storing 265
declaring, command 242
decreasing numeric values 283
default 74
DEFAULTSESSIONHANDLE 74
direct 47
example of 21
Function Key (@F) 32
Function Key Title (@T) 32
increasing numeric values 372
indirect 27, 48
named Boolean 40
named numeric, defined and use of 37
named string 27, 51
numeric 36, 37, 47, 51, 52
passing between routines 61
record buffer 27, 30, 52
Result 174
scoping rules 59, 60
settings 34

string 35
system 47, 108, 109, 160, 164, 165, 206

VERSION function 207
version of DCS, determining 207
VISIBLE function 208
VT Series emulations, configuring. See emulation con-

figuration.

W
WAIT CHAR command 544
WAIT CLOSE command 545
WAIT commands, using 76
WAIT DELAY command 546–547
WAIT ECHO command 548
WAIT EDIT command 549
WAIT PROMPT command 550
WAIT QUIET command 551–552

example of 56
WAIT RESUME command 553

example of 76
use of 79

WAIT SCREEN command 554
WAIT SIGNAL (DDE command). See (DDE) WAIT SIG-

NAL command.
wait state

defined 76
terminating 76

WAIT STRING command 555
example of 35

WAIT UNTIL command 556
warning errors

defined 82
WHEN ADVISE (DDE command). See (DDE) WHEN

ADVISE command.
WHEN CANCEL command 557–558
WHEN COLLECT command 559–560
WHEN commands

use of 22, 76
WHEN DISCONNECT command 561
WHEN ECHO command 562

use of 47
WHEN ERROR command 563

example of 501
WHEN EXECUTE (DDE command). See (DDE) WHEN

EXECUTE command.
WHEN INITIATE (DDE command). See (DDE) WHEN

INITIATE command.
WHEN INPUT command 564–565

use of 47
WHEN POKE (DDE command). See (DDE) WHEN

POKE command.
WHEN QUIET command 566

example of 22
WHEN REQUEST (DDE command). See (DDE) WHEN

REQUEST command.
WHEN SCREEN command 567–568
WHEN STRING command 569–570

example of 76
WHEN TERMINATE (DDE command). See (DDE)

634

D
C

S
Sc

rip
t L

an
gu

ag
e

R
ef

er
en

ce

WHEN TERMINATE command.
WHEN TIMER command 571

example of 76
WHEN WINDOW command 572
WHILE command 573

across multiple lines 23
example of 24, 31, 45, 106
use of 22

wide buttons (in scripted dialog boxes)
updating attributes 296, 315

wildcard characters
use of 52

wildcard characters, setting 511
window

application title, setting 465
associated file name, retrieving 214
buffer. See history buffer.
cascading 586
clearing via script 247
closing 576
commands, grouped 239
default for Windows messages, setting 577
dimensions, retrieving 167
dimensions, setting 447
functions, grouped 95
hiding 578
making active 574
maximized state, determining 215
maximized state, setting 447
maximizing 579
minimized state, determining 155
minimizing 581
moving 582
name, retrieving 214, 215
name, setting 512
opening 583
pasting text from the clipboard 331
position, retrieving 167
restoring previous state 447
restoring to previous size 585
selected text, saving 456
selected text, sending 457
selecting text 452
showing (unhiding) 587
tiling 575
title, retrieving 211, 214
title, setting 512
visibility, determining 208
visibility, setting 447
Windows messages, sending 580

WINDOW ACTIVATE command 574
WINDOW ARRANGE command 575
WINDOW CLOSE command 576
WINDOW DEFAULT command 577
WINDOW function 209
window handle

of active child window 96
of active session window 107
of session window 115

window handles
default, setting 486
defined and use of 74
of active window, retrieving 96
of default session, retrieving 115

WINDOW HIDE command 578
example of 74

WINDOWHND function 210
example of 74

WINDOW MAXIMIZE command 579
WINDOW MESSAGE command 580
WINDOW MINIMIZE command 581
WINDOW MOVE command 582
WINDOWNAME function 211
WINDOW OPEN command 583–584
window operations, grouped 239
WINDOW RESTORE command 585
windows

session 74
window handles 74, 75

Windows messages, sending 580
Windows metafile graphics

adding to scripted dialog boxes 311
copying to a printer 325
copying to the clipboard 325

WINDOW STACK command 586
WINDOW UNHIDE command 587
WNDCLASS function 212
WNDFILE function 213
WNDTITLE function 214
word wrapping for file transfers 513

X
XCLOCK messages 514
XFERCONFIG command 588–592
XModem configuration. See file transfer configuration.
XSYSTEM messages 515

Y

YModem configuration. See file transfer configuration.

Z

ZModem configuration. See file transfer configuration.
ZOOMED function 215

